采用静载模拟巷道初始地应力场,TNT爆炸模拟冲击地压,利用大型地质力学模型试验机对巷道在动、静荷载联合作用下的响应规律进行研究。试验中施加了相当于相似材料单轴抗压强度的最大静压力,荷载侧压比为1/3。在模型内部相同位置依次施加...采用静载模拟巷道初始地应力场,TNT爆炸模拟冲击地压,利用大型地质力学模型试验机对巷道在动、静荷载联合作用下的响应规律进行研究。试验中施加了相当于相似材料单轴抗压强度的最大静压力,荷载侧压比为1/3。在模型内部相同位置依次施加10,15和20 g TNT动荷载,在最后一次爆炸荷载作用下,洞室出现抛掷型冲击地压破坏现象。试验结果表明:巷道冲击地压灾害是动、静荷载联合作用的结果;在冲击瞬间作用下,冲击荷载与已存在静荷载叠加,使得巷道围岩压力迅速增加,叠加后作用力大于围岩承载能力时,引发围岩冲击破坏;围岩产生的冲击变形与巷道开挖后产生的初始变形叠加,形变超出围岩的变形能力时,洞壁首先发生破坏。围岩变形和冲击破坏范围与冲击力的大小及地应力水平相关性显著。展开更多
Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. T...Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance(the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance(the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.展开更多
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)...To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.展开更多
Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is n...Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.展开更多
A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobil...A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.展开更多
A new type of airtight wall with the combination of foamed concrete and pier support was designed in this study. Based on the theories and models related to the foamed concrete and blasting shock load, using the numer...A new type of airtight wall with the combination of foamed concrete and pier support was designed in this study. Based on the theories and models related to the foamed concrete and blasting shock load, using the numerical analysis method, this study obtains the new material's mechanical and destruction laws through analyzing its reaction to different conditions of load (mining and shock waves), airtight wall thickness (1.2, 1.5, 1.8, 2.1 m) and steel pipe diameters (400, 450, 500 and 600 mm). The results show that: ①foamed concrete can have very good suspension, and the pier column support is the main carrier of roof pressure; ② the damaged area of foamed concrete decreases as the foamed concrete thickness increases. Under impact loading, the thickness of the foamed concrete wall plays a more obvious role in retaining its integrity; ③under the same mining pressure, the damage area increases as the steel pipe diameter increases; ④ with additional mining stress increase, under whether static load or impact load, the stress on the foamed concrete and steel pipe will also increase gradually, therefore the actual airtight wall design will need to be based on specific circumstances in steel stress.展开更多
This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of ...This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.展开更多
文摘采用静载模拟巷道初始地应力场,TNT爆炸模拟冲击地压,利用大型地质力学模型试验机对巷道在动、静荷载联合作用下的响应规律进行研究。试验中施加了相当于相似材料单轴抗压强度的最大静压力,荷载侧压比为1/3。在模型内部相同位置依次施加10,15和20 g TNT动荷载,在最后一次爆炸荷载作用下,洞室出现抛掷型冲击地压破坏现象。试验结果表明:巷道冲击地压灾害是动、静荷载联合作用的结果;在冲击瞬间作用下,冲击荷载与已存在静荷载叠加,使得巷道围岩压力迅速增加,叠加后作用力大于围岩承载能力时,引发围岩冲击破坏;围岩产生的冲击变形与巷道开挖后产生的初始变形叠加,形变超出围岩的变形能力时,洞壁首先发生破坏。围岩变形和冲击破坏范围与冲击力的大小及地应力水平相关性显著。
基金Projects(2015CB058003,2012CB026204)supported by the National Basic Research Program of ChinaProjects(51238007,51210012)supported by the National Natural Science Foundation of China
文摘Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance(the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance(the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.
基金Projects(41272304,51304241,51204068)supported by the National Natural Science Foundation of ChinaProject(2014M552164)supported by the Postdoctoral Science Foundation of ChinaProject(20130162120015)supported by the PhD Programs Foundation of Ministry of Education of China
文摘To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature.
基金Projects(51204206,41272304,41372278) supported by the National Natural Science Foundation of ChinaProject(20110162120057) supported by Ph D Program Foundation of Ministry of Education ChinaProject(201012200232) supported by the Freedom Explore Program of Central South University,China
文摘Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.
文摘A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.
文摘A new type of airtight wall with the combination of foamed concrete and pier support was designed in this study. Based on the theories and models related to the foamed concrete and blasting shock load, using the numerical analysis method, this study obtains the new material's mechanical and destruction laws through analyzing its reaction to different conditions of load (mining and shock waves), airtight wall thickness (1.2, 1.5, 1.8, 2.1 m) and steel pipe diameters (400, 450, 500 and 600 mm). The results show that: ①foamed concrete can have very good suspension, and the pier column support is the main carrier of roof pressure; ② the damaged area of foamed concrete decreases as the foamed concrete thickness increases. Under impact loading, the thickness of the foamed concrete wall plays a more obvious role in retaining its integrity; ③under the same mining pressure, the damage area increases as the steel pipe diameter increases; ④ with additional mining stress increase, under whether static load or impact load, the stress on the foamed concrete and steel pipe will also increase gradually, therefore the actual airtight wall design will need to be based on specific circumstances in steel stress.
文摘This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.