The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-c...The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-crossflow mass flux ratio on heat transfer characteristics. The study shows that: (1) under the different jet-to-surface spacing, the impingement cooling with inline arrangement is better than that with staggered arrangement for a given jet-to-crossflow mass flux ratio;( 2 ) the value of jet-to-surface spacing impacts a complicated effect on the flow and heat transfer for jet array impingement; (3) as the ratio of crossflow-to-jet mass flux ratio increases, the cooling effectiveness on monotonous decrease for both inline and staggered arrangements at the same jet-to-surface spacing.展开更多
Choosing the equipment with good shock-resistant p erformance and taking shock protection measures while designing the onboard sett ings, the safety of onboard settings can be assured when warships, especially su bmar...Choosing the equipment with good shock-resistant p erformance and taking shock protection measures while designing the onboard sett ings, the safety of onboard settings can be assured when warships, especially su bmarine subjected to non-contact underwater explosion, that is, these means can be used to limit the rattlespace (i.e., the maximum displacement of the equipme nt relative to the base) and the peak acceleration experienced by the equipment. Using shock-resistant equipments is one of shock protection means. The shock- resistant performance of the shock-resistant equipments should be verified in t he design phase of the equipments. The FEA (finite element analysis) software, for example, MSC.NASTRAN ○R , can be used to verify the shock-resistant performance. MSC.PATRAN ○R and MSC.NASTRAN are used for modeling and analyzing the floating raft vibration isolating equipment. The model of the floating raft and the floating raft vibration isolating system are theoretically analyzed and calculated, and the analysis results are in agreement with the test results. The transient response analysis of the system model follows the modal analysis of the floating raft vibration isolating system. And it is used to verify the shock-resistant performance. The ana lysis and calculation method used in this paper can be used to analyze the shock -resistant performance of onboard shock-resistant equipments.展开更多
To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed i...To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.展开更多
文摘The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-crossflow mass flux ratio on heat transfer characteristics. The study shows that: (1) under the different jet-to-surface spacing, the impingement cooling with inline arrangement is better than that with staggered arrangement for a given jet-to-crossflow mass flux ratio;( 2 ) the value of jet-to-surface spacing impacts a complicated effect on the flow and heat transfer for jet array impingement; (3) as the ratio of crossflow-to-jet mass flux ratio increases, the cooling effectiveness on monotonous decrease for both inline and staggered arrangements at the same jet-to-surface spacing.
文摘Choosing the equipment with good shock-resistant p erformance and taking shock protection measures while designing the onboard sett ings, the safety of onboard settings can be assured when warships, especially su bmarine subjected to non-contact underwater explosion, that is, these means can be used to limit the rattlespace (i.e., the maximum displacement of the equipme nt relative to the base) and the peak acceleration experienced by the equipment. Using shock-resistant equipments is one of shock protection means. The shock- resistant performance of the shock-resistant equipments should be verified in t he design phase of the equipments. The FEA (finite element analysis) software, for example, MSC.NASTRAN ○R , can be used to verify the shock-resistant performance. MSC.PATRAN ○R and MSC.NASTRAN are used for modeling and analyzing the floating raft vibration isolating equipment. The model of the floating raft and the floating raft vibration isolating system are theoretically analyzed and calculated, and the analysis results are in agreement with the test results. The transient response analysis of the system model follows the modal analysis of the floating raft vibration isolating system. And it is used to verify the shock-resistant performance. The ana lysis and calculation method used in this paper can be used to analyze the shock -resistant performance of onboard shock-resistant equipments.
文摘To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.