This paper investigates outer synchronization of complex networks,especially,outer complete synchronizationand outer anti-synchronization between the driving network and the response network.Employing the impulsivecon...This paper investigates outer synchronization of complex networks,especially,outer complete synchronizationand outer anti-synchronization between the driving network and the response network.Employing the impulsivecontrol method which is uncontinuous,simple,efficient,low-cost and easy to implement in practical applications,weobtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complexnetworks.Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme.展开更多
Compared with the traditional SCR phase-shift regulated power supply, a new type of power semiconductor , noncrystalline state magnetic material and pulse width modulation technology, high-power switching supply has m...Compared with the traditional SCR phase-shift regulated power supply, a new type of power semiconductor , noncrystalline state magnetic material and pulse width modulation technology, high-power switching supply has many advantages: small volume, high converting efficiency, good dynamic performance, small harmonic componont and small pollution to AC supply.展开更多
Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More...Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More pulsars have braking indices measured.The period derivative of intermittent pulsars and magnetars can vary by a factor of several. However, during pulsar studies, the magnetic dipole braking in vacuum is still often assumed. It is shown that the fundamental assumption of magnetic dipole braking(vacuum condition) does not exist and it is not consistent with the observations. The physical torque must consider the presence of the pulsar magnetosphere. Among various efforts, the wind braking model can explain many observations of pulsars and magnetars in a unified way. It is also consistent with the up-to-date observations. It is time for a paradigm shift in pulsar studies: from magnetic dipole braking to wind braking. As one alternative to the magnetospheric model, the fallback disk model is also discussed.展开更多
The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(...The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(LCD) biasing.In these applications,a regulator with small volume,fewer external components and high efficiency is highly desired.This paper proposes a projected off-and on-time boost control scheme,based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-state resistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS(BCD) process.A 12 V,0.3 A boost regulator prototype is presented as well.With projected off-time and modulated on-time in continuous conduction mode(CCM),a quasi fixed frequency,which is preferred for ripple control,is realized.With projected on-time and modulated off-time in discontinuous conduction mode(DCM),pulse frequency modulation(PFM) operation,which is beneficial to light load efficiency improvement,is achieved without extra control circuitry.Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.展开更多
基金Supported by the National Nature Science Foundation of China under Grant No. 70571059Young Project under Grant No. Q20111309Key Program under Grant No. D20111305 of Hubei Provincial Department of Education
文摘This paper investigates outer synchronization of complex networks,especially,outer complete synchronizationand outer anti-synchronization between the driving network and the response network.Employing the impulsivecontrol method which is uncontinuous,simple,efficient,low-cost and easy to implement in practical applications,weobtain some sufficient conditions of outer complete synchronization and outer anti-synchronization between two complexnetworks.Numerical simulations demonstrate the effectiveness of the proposed impulsive control scheme.
文摘Compared with the traditional SCR phase-shift regulated power supply, a new type of power semiconductor , noncrystalline state magnetic material and pulse width modulation technology, high-power switching supply has many advantages: small volume, high converting efficiency, good dynamic performance, small harmonic componont and small pollution to AC supply.
基金supported by the Xinjiang Bairen project,West Light Foundation of Chinese Academy of Sciences (Grant No. LHXZ201201)National Program on Key Basic Research Project (Grant No. 2015CB857100), Qing Cu Hui of Chinese Academy of Sciences
文摘Pulsars are good clocks in the universe. One fundamental question is that why they are good clocks? This is related to the braking mechanism of pulsars. Nowadays pulsar timing is done with unprecedented accuracy. More pulsars have braking indices measured.The period derivative of intermittent pulsars and magnetars can vary by a factor of several. However, during pulsar studies, the magnetic dipole braking in vacuum is still often assumed. It is shown that the fundamental assumption of magnetic dipole braking(vacuum condition) does not exist and it is not consistent with the observations. The physical torque must consider the presence of the pulsar magnetosphere. Among various efforts, the wind braking model can explain many observations of pulsars and magnetars in a unified way. It is also consistent with the up-to-date observations. It is time for a paradigm shift in pulsar studies: from magnetic dipole braking to wind braking. As one alternative to the magnetospheric model, the fallback disk model is also discussed.
基金Project (No.90707002) supported by the National Natural Science Foundation of China
文摘The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(LCD) biasing.In these applications,a regulator with small volume,fewer external components and high efficiency is highly desired.This paper proposes a projected off-and on-time boost control scheme,based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-state resistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS(BCD) process.A 12 V,0.3 A boost regulator prototype is presented as well.With projected off-time and modulated on-time in continuous conduction mode(CCM),a quasi fixed frequency,which is preferred for ripple control,is realized.With projected on-time and modulated off-time in discontinuous conduction mode(DCM),pulse frequency modulation(PFM) operation,which is beneficial to light load efficiency improvement,is achieved without extra control circuitry.Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.