A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail.The formula of the tire is established by using the magic form...A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail.The formula of the tire is established by using the magic formula.Through the modal analysis of the vehicle,the modes of the vehicle are obtained,and resonance has little effect on the vehicle.When the vehicle moves in a right turn curve,it yaws in the clockwise direction.Under the action of the guidewheel(stable wheel)force,the front bogie yaws clockwise but the rear one yaws counterclockwise.Moreover,the two bogies and the car body roll during the curve passing process of the vehicle.When the vehicle speed is high enough,the left drive wheel will derail and the anti-overturning moments are provided by the stable wheels.Then,the car body yaws in the counterclockwise direction when it moves out of the curve.In the simulation of the vehicle passing the curve,the clearance between the guide wheel and rail surface will lead to a fatal impact on the bogie.At the same time,the dynamic response of the vehicle under the crosswind is tested.The vehicle will not overturn due to the crosswind.Finally,the collision of adjacent vehicles is analyzed.The results show that there is an intermittent collision force between two vehicles due to the vehicle's non synchronous pitch motion.展开更多
The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion...The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.展开更多
基金The National Key Research and Development Program of China(No.2018YFB1201702)the Program of State Key Laboratory of Traction Power(No.2018TPL_T11)the Fundamental Research Funds for the Central Universities(No.2682017CX009).
文摘A 20 degree of the freedom model of the micro-suspended monorail is established to analyze a new type of the vehicle system named micro-suspended monorail.The formula of the tire is established by using the magic formula.Through the modal analysis of the vehicle,the modes of the vehicle are obtained,and resonance has little effect on the vehicle.When the vehicle moves in a right turn curve,it yaws in the clockwise direction.Under the action of the guidewheel(stable wheel)force,the front bogie yaws clockwise but the rear one yaws counterclockwise.Moreover,the two bogies and the car body roll during the curve passing process of the vehicle.When the vehicle speed is high enough,the left drive wheel will derail and the anti-overturning moments are provided by the stable wheels.Then,the car body yaws in the counterclockwise direction when it moves out of the curve.In the simulation of the vehicle passing the curve,the clearance between the guide wheel and rail surface will lead to a fatal impact on the bogie.At the same time,the dynamic response of the vehicle under the crosswind is tested.The vehicle will not overturn due to the crosswind.Finally,the collision of adjacent vehicles is analyzed.The results show that there is an intermittent collision force between two vehicles due to the vehicle's non synchronous pitch motion.
基金Project(2013CB036203)supported by the National Basic Research Program of ChinaProject(2013M530022)supported by China Postdoctoral Science Foundation+4 种基金Project(2013-K5-31)supported by Science and Technology Plan of Ministry of Housing and Urban-Rural Development of ChinaProject supported by High-level Scientific Research Foundation for the Introduction of Talent of Yangzhou University,ChinaProject supported by the Open Fund of the National Engineering Laboratory for High Speed Railway Construction,ChinaProject(IRT1296)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(50908236)supported by the National Natural Science Foundation of China
文摘The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.