The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distanc...The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.展开更多
To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the i...To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.展开更多
The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selec...The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.展开更多
The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic...The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic suspension technologies, and its key technologies required are given. This paper also makes analysis on using scramjet and magnetic suspension technologies to launch a reusable rocket, and the results show that a normal temperature conductor maglev launch system is feasible.展开更多
Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, ...Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, experimental techniques such as 2D and/or 3D LDV (Laser Doppler Velocimetry) measurements provide only limited discrete information at given points; especially, for the cases of complex flows such as dump combustor swirling flows. For this type of flows, usual numerical interpolating schemes appear to be unsuitable. Recently, neural networks have emerged as viable means of expanding a finite data set of experimental measurements to enhance better understanding of a particular complex phenomenon. This study showed that generalized feed forward network is suitable for the prediction of turbulent swirling flow characteristics in a model dump combustor. These techniques are proposed for optimum designs of dump combustors and ramjet engines.展开更多
Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surro...Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surrogate models proposed in the open literature are examined for their applicability and accuracy in calculating thermodynamic and transport properties of the China aviation kerosene RP-3 at supercritical pressures,based on the extended corresponding-states methods.The enthalpy change from endothermic decomposition and low heating value from combustion of the jet fuel are also evaluated.Results from a number of simple and representative surrogate models,which contain species components ranging from 1 to10,are analyzed in detail.Data analyses indicate that a surrogate model with four species is the best choice for thermophysical property calculations under the tested conditions,with fluid temperature up to 650 K at various supercritical pressures.The surrogate model is particularly accurate in predicting the pseudo-critical temperature of aviation kerosene RP-3 at a supercritical pressure.A simple surrogate model containing the n-decane species and a surrogate model containing 10 species are the other two acceptable options.The work conducted herein is of practical importance for theoretical analyses and numerical simulations of various physicochemical processes at engine operating conditions.展开更多
The transverse injection flow field has an important impact on the flowpath design of scramjet engines. At present a combination of the transverse injection scheme and any other flame holder has been widely employed i...The transverse injection flow field has an important impact on the flowpath design of scramjet engines. At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream; combustion efficiency has been improved thereby, as well as engine thrust. Research on mixing techniques for the transverse injection flow field is summarized from four aspects, namely the jet-to-crossflow pressure ratio, the geometric configuration of the injection port, the number of injection ports, and the injection angle. In conclusion, urgent investigations of mixing techniques of the transverse injection flow field are pro- posed, especiaUy data mining in the quantitative analytical results for transverse injection flow field, based on results from multi-objective design optimization theory.展开更多
In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat ...In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle.展开更多
A new expansion cycle scheme of the scramjet engine system including a hydrocarbon-fuel-based(kerosene)regenerative cooling system and supercritical/cracking kerosene-based turbo-pump was proposed in this paper.In thi...A new expansion cycle scheme of the scramjet engine system including a hydrocarbon-fuel-based(kerosene)regenerative cooling system and supercritical/cracking kerosene-based turbo-pump was proposed in this paper.In this cycle scbeme,the supercritical/cracking kerosene with high pressure and high temperature is formed through the cooling channel.And then,in order to make better use of the high energy of the supercritical/cracking fuel,the supercritical/cracking kerosene fuel was used to drive the turbo-pump to obtain a high pressure of the cold kerosene fuel at the entrance of the cooling channel.In the end,the supercritical/cracking kerosene from the turbine exit is injected into the scramjet combustor.Such supercritical/cracking kerosene fuel can decrease the fuel-air mixing length and increase the combustion efficiency,due to the gas state and low molecular weight of the cracking fuel.In order to ignite the cold kerosene in the start-up stage,the ethylene-assisted ignition subsystem was applied.In the present paper,operating modes and characteristics of the expansion cycle system are first described.And then,the overall design of the system and the characterisitics of the start-up process are analyzed numerically to investigate effects of the system parameters on the scramjet start-up performance.The results show that the expansion cycle system proposed in this paper can work well under typical conditions.The research work in this paper can help to make a solid foundation for the research on the coupling characteristics between the dynamics and thermodynamics of the scramjet expansion cycle system.展开更多
Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module o...Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).展开更多
A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage...A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage of magnesium,a binder and a small amount of oxidant,was used as a hydro reactive fuel.Cold water was injected into the combustion chamber as a main oxidant.A scaled-down experimental engine was tested in a direct-connect ground testing system to characterize the factors influencing the engine performance.The results show that the increasing of total water/fuel ratio,an addition of secondary water intake along the combustion chamber,a larger magnesium content in the solid propellant,a smaller primary water injection angle towards the coming main flow,and a higher primary injection pressure were all able to promote the engine performance.The maximum engine performance was obtained in test 08,and with all tests,an appropriate set of parameters and conditions for the optimum engine performance were determined展开更多
An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combu...An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combus- tot. Numerical simulations are done to evaluate the effectiveness of the proposed method, and experiments are made in the direct-connect hydrocarbon fueled scramjet combustor of Mach-6 flight for different equivalence ra- tios. The distribution of heat flux along the axial and circumferential directions can be obtained using the pro- posed method. The distribution of heat flux is uneven which is caused by the aerodynamic heating, combustion heat release and changes of section area, and the peak heat flux can be more than 2MW/m^2 during the experi- ments. Heat flux increases with the increase in equivalence ratio for the same Mach number. And axial distribu- tion of heat flux is uniform for different equivalence ratios. In addition, the combustion heat release area of the combustion chamber can therefore be concluded which is useful for guiding the structural design of the thermal protection system.展开更多
文摘The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.
文摘To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.
文摘The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.
文摘The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic suspension technologies, and its key technologies required are given. This paper also makes analysis on using scramjet and magnetic suspension technologies to launch a reusable rocket, and the results show that a normal temperature conductor maglev launch system is feasible.
文摘Experimental data of the continuous evolution of fluid flow characteristics in a dump combustor is very useful and essential for better and optimum designs of gas turbine combustors and ramjet engines. Unfortunately, experimental techniques such as 2D and/or 3D LDV (Laser Doppler Velocimetry) measurements provide only limited discrete information at given points; especially, for the cases of complex flows such as dump combustor swirling flows. For this type of flows, usual numerical interpolating schemes appear to be unsuitable. Recently, neural networks have emerged as viable means of expanding a finite data set of experimental measurements to enhance better understanding of a particular complex phenomenon. This study showed that generalized feed forward network is suitable for the prediction of turbulent swirling flow characteristics in a model dump combustor. These techniques are proposed for optimum designs of dump combustors and ramjet engines.
基金supported by the National Natural Science Foundation of China(Grant No.11372277)
文摘Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surrogate models proposed in the open literature are examined for their applicability and accuracy in calculating thermodynamic and transport properties of the China aviation kerosene RP-3 at supercritical pressures,based on the extended corresponding-states methods.The enthalpy change from endothermic decomposition and low heating value from combustion of the jet fuel are also evaluated.Results from a number of simple and representative surrogate models,which contain species components ranging from 1 to10,are analyzed in detail.Data analyses indicate that a surrogate model with four species is the best choice for thermophysical property calculations under the tested conditions,with fluid temperature up to 650 K at various supercritical pressures.The surrogate model is particularly accurate in predicting the pseudo-critical temperature of aviation kerosene RP-3 at a supercritical pressure.A simple surrogate model containing the n-decane species and a surrogate model containing 10 species are the other two acceptable options.The work conducted herein is of practical importance for theoretical analyses and numerical simulations of various physicochemical processes at engine operating conditions.
基金supported by the Science Foundation of National University of Defense Technology (No. JC11-01-02)the Hunan Provincial Natural Science Foundation of China (No.12jj4047)
文摘The transverse injection flow field has an important impact on the flowpath design of scramjet engines. At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream; combustion efficiency has been improved thereby, as well as engine thrust. Research on mixing techniques for the transverse injection flow field is summarized from four aspects, namely the jet-to-crossflow pressure ratio, the geometric configuration of the injection port, the number of injection ports, and the injection angle. In conclusion, urgent investigations of mixing techniques of the transverse injection flow field are pro- posed, especiaUy data mining in the quantitative analytical results for transverse injection flow field, based on results from multi-objective design optimization theory.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51076035)
文摘In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle.
基金National Natural Science Foundation of China(No.11272344)
文摘A new expansion cycle scheme of the scramjet engine system including a hydrocarbon-fuel-based(kerosene)regenerative cooling system and supercritical/cracking kerosene-based turbo-pump was proposed in this paper.In this cycle scbeme,the supercritical/cracking kerosene with high pressure and high temperature is formed through the cooling channel.And then,in order to make better use of the high energy of the supercritical/cracking fuel,the supercritical/cracking kerosene fuel was used to drive the turbo-pump to obtain a high pressure of the cold kerosene fuel at the entrance of the cooling channel.In the end,the supercritical/cracking kerosene from the turbine exit is injected into the scramjet combustor.Such supercritical/cracking kerosene fuel can decrease the fuel-air mixing length and increase the combustion efficiency,due to the gas state and low molecular weight of the cracking fuel.In order to ignite the cold kerosene in the start-up stage,the ethylene-assisted ignition subsystem was applied.In the present paper,operating modes and characteristics of the expansion cycle system are first described.And then,the overall design of the system and the characterisitics of the start-up process are analyzed numerically to investigate effects of the system parameters on the scramjet start-up performance.The results show that the expansion cycle system proposed in this paper can work well under typical conditions.The research work in this paper can help to make a solid foundation for the research on the coupling characteristics between the dynamics and thermodynamics of the scramjet expansion cycle system.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 61350)
文摘A performance study of a water ramjet engine is described.The engine is powered by the reaction of a magnesium-based propellant and ingested water.In this study,a solid propellant,which consisted of a large percentage of magnesium,a binder and a small amount of oxidant,was used as a hydro reactive fuel.Cold water was injected into the combustion chamber as a main oxidant.A scaled-down experimental engine was tested in a direct-connect ground testing system to characterize the factors influencing the engine performance.The results show that the increasing of total water/fuel ratio,an addition of secondary water intake along the combustion chamber,a larger magnesium content in the solid propellant,a smaller primary water injection angle towards the coming main flow,and a higher primary injection pressure were all able to promote the engine performance.The maximum engine performance was obtained in test 08,and with all tests,an appropriate set of parameters and conditions for the optimum engine performance were determined
文摘An experimental measurement and calculation method which consist of thermal response model, convergence criteria and control algorithms, is proposed in this paper for the determination of heat flux in a scramjet combus- tot. Numerical simulations are done to evaluate the effectiveness of the proposed method, and experiments are made in the direct-connect hydrocarbon fueled scramjet combustor of Mach-6 flight for different equivalence ra- tios. The distribution of heat flux along the axial and circumferential directions can be obtained using the pro- posed method. The distribution of heat flux is uneven which is caused by the aerodynamic heating, combustion heat release and changes of section area, and the peak heat flux can be more than 2MW/m^2 during the experi- ments. Heat flux increases with the increase in equivalence ratio for the same Mach number. And axial distribu- tion of heat flux is uniform for different equivalence ratios. In addition, the combustion heat release area of the combustion chamber can therefore be concluded which is useful for guiding the structural design of the thermal protection system.