Stability of Defibrase in various pH buffer solutions was investigated. Enzyme-linked immuno-sorbent assay (ELISA) and coagulating time method were used to assess antigenic stability and coagulating stability, respect...Stability of Defibrase in various pH buffer solutions was investigated. Enzyme-linked immuno-sorbent assay (ELISA) and coagulating time method were used to assess antigenic stability and coagulating stability, respectively. The change of antigenic activities and coagulating activities of Defibrase in the same buffer solutions (pH 6, 7 and 8, with the exception of pH 3.6) showed similar tendency to decline with the time. Concentrated Defi-brase was relatively stable at neutral pH 6~7, more than 95% of its initial activities (100BUmL-1) was kept after a 10-day storage at 40 oC, whereas in pH 3.6 and pH 9 buffer solutions, diluted Defibrase was very labile. Addition of Triton X-100 or bovine serum albumin could effectively prevent loss of Defibrase by minimizing adsorption of De-fibrase to plastic surface (P<0.005). Concentration of Defibrase could also affect its stability in aqueous solutions.展开更多
Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer pr...Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.展开更多
Based on theoretical calculation and Monte Carlo simulation,this paper proposes a new method for the diagnosing of 16.7 MeV high-energy pulse gamma,named "scattering absorption method". The ratio of the sens...Based on theoretical calculation and Monte Carlo simulation,this paper proposes a new method for the diagnosing of 16.7 MeV high-energy pulse gamma,named "scattering absorption method". The ratio of the sensitivity of high-energy gamma to that of the low-energy background gamma can reach 106 to 108 by this new method. The sensitivity of 16.7 MeV high-energy gamma ranges from 10-21 to 10-16 C·cm2. It's better than the traditional method which is based on the magnetic analyzer and Cherenkov detector on some aspects.展开更多
A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobil...A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.展开更多
文摘Stability of Defibrase in various pH buffer solutions was investigated. Enzyme-linked immuno-sorbent assay (ELISA) and coagulating time method were used to assess antigenic stability and coagulating stability, respectively. The change of antigenic activities and coagulating activities of Defibrase in the same buffer solutions (pH 6, 7 and 8, with the exception of pH 3.6) showed similar tendency to decline with the time. Concentrated Defi-brase was relatively stable at neutral pH 6~7, more than 95% of its initial activities (100BUmL-1) was kept after a 10-day storage at 40 oC, whereas in pH 3.6 and pH 9 buffer solutions, diluted Defibrase was very labile. Addition of Triton X-100 or bovine serum albumin could effectively prevent loss of Defibrase by minimizing adsorption of De-fibrase to plastic surface (P<0.005). Concentration of Defibrase could also affect its stability in aqueous solutions.
基金financial support from the Project of National Science Foundation of China(Grant No.41272346)the National Outstanding Youth Funds(Grant No.41225011)+2 种基金financial support from the Science & Technology Research Plan of China Railway Eryuan Engineering Group CO.LTD (Grant No.13164196(13-15))the Project of National Science Foundation of China(Grant Nos. 41472293,91430105)"hundred talents" program of CAS
文摘Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.
文摘Based on theoretical calculation and Monte Carlo simulation,this paper proposes a new method for the diagnosing of 16.7 MeV high-energy pulse gamma,named "scattering absorption method". The ratio of the sensitivity of high-energy gamma to that of the low-energy background gamma can reach 106 to 108 by this new method. The sensitivity of 16.7 MeV high-energy gamma ranges from 10-21 to 10-16 C·cm2. It's better than the traditional method which is based on the magnetic analyzer and Cherenkov detector on some aspects.
文摘A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.