The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Multistage superimposed deformation has been discussed systematically based on the progress of the stratigraphic sequences of the northeastern margin of Yangtze Block.The new-discovered first stage deformation of thos...Multistage superimposed deformation has been discussed systematically based on the progress of the stratigraphic sequences of the northeastern margin of Yangtze Block.The new-discovered first stage deformation of those sequences occurred from the middle Triassic to the end of early Jurassic together with development of regional folding, which was resulted from the deep detachment shearing tending toward NW-WNW. The folds dip to east and fall down toward west, and were superimposed by the main stage folding.Thereafter, a series of folds were developed with axes trending toward northeast.Consequently normal folds occurred on the normal limbs while overturned fold on the overturned limbs during the first stage folding. The detachment or thrust was formed from late Jurassic to early Cretaceous. Due to the uplifting of Dabie and the Wannan Mountains in the north and south sides, the bi-directional thrusting belt was formed by gravity flowing from the Mountains toward the center of the basin along the north side of Xuancheng and south side of Guichi. The deformation geodynamics was discussed simply based on the newly recognized information about the tectonic evolution.展开更多
The effect of bending pre-strain and pressure on the forming behavior of AA5052-H32 sheets has been studied using a shock tube. Various forming parameters like dome height, effective strain and stress distribution, ha...The effect of bending pre-strain and pressure on the forming behavior of AA5052-H32 sheets has been studied using a shock tube. Various forming parameters like dome height, effective strain and stress distribution, hardness, and grain size evolution have been measured. Circular grids are printed on the sheets and Hill’s 1948 yield criterion is used to calculate the effective strain distribution. The effective stress distribution is calculated by using the Hollomon’s power law. The strain evolution during the forming process is monitored by mounting a strain rosette at the mid location of the sheet. The strain-time graph confirms the sharp rise in the peak strain and it increases significantly at higher pressure. The variation in the forming parameters asserts that the material stretches uniformly without strain localization. The optical microstructures also depict that the equiaxed grains are stretched and elongated after the shock deformation. This analysis confirms that the forming behavior of the material is dependent both on the degree of pre-strain and the change in pressure.展开更多
Numerical simulation, which is one of the important methods for tectonic simulation, can be successfully applied into the stability analysis of rock stratum in mining engineering. With numerical simulation, the charac...Numerical simulation, which is one of the important methods for tectonic simulation, can be successfully applied into the stability analysis of rock stratum in mining engineering. With numerical simulation, the characteristics of stress deformation field of the area study can be well discovered, the stress concentration regions can be clearly located and the mechanism and effect of the stress concentration can be analyzed. The results of these studies offer fundamental data for evaluation of the rock stability and prediction of the tunnel wall stability in the working area.展开更多
The investigation of the interplay between geometry and nonlinearity may open the road to the control of extreme waves. We study three-dimensional localization and dispersive shocks in a bent cigar shaped potential by...The investigation of the interplay between geometry and nonlinearity may open the road to the control of extreme waves. We study three-dimensional localization and dispersive shocks in a bent cigar shaped potential by the nonlinear Schro¨ dinger equation. At high bending and high nonlinearity, topological trapping is frustrated by the generation of curved wave-breaking. Four-dimensional parallel simulations confirm the theoretical model. This work may contribute to novel devices based on geometrically constrained highly nonlinear dynamics and tests and analogs of fundamental physical theories in curved space.展开更多
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
文摘Multistage superimposed deformation has been discussed systematically based on the progress of the stratigraphic sequences of the northeastern margin of Yangtze Block.The new-discovered first stage deformation of those sequences occurred from the middle Triassic to the end of early Jurassic together with development of regional folding, which was resulted from the deep detachment shearing tending toward NW-WNW. The folds dip to east and fall down toward west, and were superimposed by the main stage folding.Thereafter, a series of folds were developed with axes trending toward northeast.Consequently normal folds occurred on the normal limbs while overturned fold on the overturned limbs during the first stage folding. The detachment or thrust was formed from late Jurassic to early Cretaceous. Due to the uplifting of Dabie and the Wannan Mountains in the north and south sides, the bi-directional thrusting belt was formed by gravity flowing from the Mountains toward the center of the basin along the north side of Xuancheng and south side of Guichi. The deformation geodynamics was discussed simply based on the newly recognized information about the tectonic evolution.
基金‘‘Aeronautical Research and Development Board (AR & DB) India” for the financial support towards the fabrication of the shock tube experimental facility at IIT Guwahati
文摘The effect of bending pre-strain and pressure on the forming behavior of AA5052-H32 sheets has been studied using a shock tube. Various forming parameters like dome height, effective strain and stress distribution, hardness, and grain size evolution have been measured. Circular grids are printed on the sheets and Hill’s 1948 yield criterion is used to calculate the effective strain distribution. The effective stress distribution is calculated by using the Hollomon’s power law. The strain evolution during the forming process is monitored by mounting a strain rosette at the mid location of the sheet. The strain-time graph confirms the sharp rise in the peak strain and it increases significantly at higher pressure. The variation in the forming parameters asserts that the material stretches uniformly without strain localization. The optical microstructures also depict that the equiaxed grains are stretched and elongated after the shock deformation. This analysis confirms that the forming behavior of the material is dependent both on the degree of pre-strain and the change in pressure.
文摘Numerical simulation, which is one of the important methods for tectonic simulation, can be successfully applied into the stability analysis of rock stratum in mining engineering. With numerical simulation, the characteristics of stress deformation field of the area study can be well discovered, the stress concentration regions can be clearly located and the mechanism and effect of the stress concentration can be analyzed. The results of these studies offer fundamental data for evaluation of the rock stability and prediction of the tunnel wall stability in the working area.
基金the support of a grant from the John Templeton Foundation(58277)support by the European Research Council Grant ERC-POC-2014 Vanguard(664782)
文摘The investigation of the interplay between geometry and nonlinearity may open the road to the control of extreme waves. We study three-dimensional localization and dispersive shocks in a bent cigar shaped potential by the nonlinear Schro¨ dinger equation. At high bending and high nonlinearity, topological trapping is frustrated by the generation of curved wave-breaking. Four-dimensional parallel simulations confirm the theoretical model. This work may contribute to novel devices based on geometrically constrained highly nonlinear dynamics and tests and analogs of fundamental physical theories in curved space.