The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and ...The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.展开更多
The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoret...The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behav- iors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: par- tial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%.展开更多
基金Supported by 863 Program Item of Hi-tech Research Development Program of China Foundation under Grant No.2002AA602012-1.
文摘The virtual prototype technology is applied to the design of the hydraulic impingement shovel, which is to increase the reliability of the design. The work principle of hydraulic impingement shovel is expatiated, and its dynamic equations are established. The 3D model of virtual prototype is built by PRO/E. Then the couple between the mechanical body of prototype and the hydraulic system is completed by virtue of ADAMS. Finally, the simulation is made on the virtual prototype. The simulation results show that the design of underwater hydraulic impingement shovel is rational. The virtual prototype technology could lay sound foundation of successful manufacturing of physical prototype for the first time and offer highly effective and feasible means for the design and production of underwater equipments.
基金supported by The National Natural Science Foundation of China (Grant No.51109178)Science and Technology Innovation Foundation of NWPU (Grant No.JC20120218)
文摘The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=I64.5°) were ob- served and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behav- iors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: par- tial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%.