Metastable 40Ar* atoms are produced in the two metastable states 3p54s [3/2]2 and 3p5 4s′ [1/2]0 in a pulsed DC discharge in a beam, and are subsequently excited to the even-parity autoionizing resonance series 3pSn...Metastable 40Ar* atoms are produced in the two metastable states 3p54s [3/2]2 and 3p5 4s′ [1/2]0 in a pulsed DC discharge in a beam, and are subsequently excited to the even-parity autoionizing resonance series 3pSnp′[3/2]1,2, 3p5 np′ [1/2]1, and 3p5nf′[5/2]3 using single photon excitation with a pulsed dye laser. The excitation spectra of the even-parity autoion- izing resonance series from the metastable 40Ar* are obtained by recording the autoionized Ar+ ions with time-of-flight ion detection in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of 〈0.1 cm-1. A wealth of autoionizing resonances are newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects are derived.展开更多
Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak pow...Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.展开更多
A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsedlaser deposition (PLD) systems have focused on achie...A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsedlaser deposition (PLD) systems have focused on achieving thickness uniformity using sequential multilayer deposition and masking followed by post-deposition annealing, MPPLD directly deposits a compositionally varied library of compounds using the directionality of PLD plumes and the resulting spatial variations of deposition rate. This system is more suitable for high-throughput compound thin-film fabrication.展开更多
This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative pictu...This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative picture of the main features of interest for impingement type of flows. The experiments were carried out for a Reynolds number based on the jet exit conditions of Rej = 4.3 × 10^4, an impingement height of 20.1 jet diameters and for a velocity ratio between the jet exit and the crossflow VR = V/Uo of 22.5. The rear jet is located at S = 6 D downstream of the first jet. The results show a large penetration of the first (upstream)jet that is deflected by the crossflow and impinges on the ground, giving rise to a ground vortex due to the collision of the radial wall and the crossflow that wraps around the impinging point like a scarf. The rear jet (located downstream) it is not so affected by the crossflow in terms of deflection, but due to the downstream wall jet that flows radially from the impinging point of the first jet it does not reach the ground. The results indicate a new flow pattern not yet reported so far, that for a VSTOL aircraft operating in ground vicinity with front wind or small forward movement may result in enhanced under pressures in the aft part of the aircraft causing a suction down force and a change of the pitching moment towards the ground.展开更多
Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate lo...Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.展开更多
Recent results for side-on ignition of uncompressed proton-boron (HB 11) fusion that use the Chu-Bobin side-on ignition with petawatt-picosecond laser pulses is extended to the reaction of helium 3-helium 3 (He3)....Recent results for side-on ignition of uncompressed proton-boron (HB 11) fusion that use the Chu-Bobin side-on ignition with petawatt-picosecond laser pulses is extended to the reaction of helium 3-helium 3 (He3). The HBll reaction resulted in radioactivity is lower values than from burning coal per generated energy. This was based on the very rare experiments with extreme suppression ofpre-pulses in order to suppress relativistic self-focusing. Subsequently, acceleration of highly directed plasma blocks of modest temperature and ultra-high ion current densities above 10H Amps/cm2 were measured in agreement with earlier derived theory. This permits the conditions of the Chu-Bobin for side-on ignition of solid density fusion. Results for similar neutron lean He3 are reported. A detailed comparison with the usual spherical laser compression and ignition of fusion is given for clarifying the basic differences of the ignition process.展开更多
Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwa...Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.展开更多
In this paper a technique is introduced on visualization of emulsified droplets in gas stream by pulse laser sheet photography. By this technique fairly clear photographs of the concentration and velocity profiles of ...In this paper a technique is introduced on visualization of emulsified droplets in gas stream by pulse laser sheet photography. By this technique fairly clear photographs of the concentration and velocity profiles of water droplets in an activation reactor were obtained. The results of the study show that with a venturi tube installed in the activator, the distribution of the droplets is more uniform than without it; the uniformity of the distribution of the droplets can improve the efficiency of the activation of the sorbent particles in the reactor. The picture of the collision of the droplets was obtained in the experiment, which could be used as basis for the study of the mechanism of humidified activation process. The results of the experimental study of the deposition of the droplets on the reactor walls is also described and discussed.展开更多
In this paper, for the full Euler system of the isothermal gas, we show that a globally stable supersonic conic shock wave solution does not exist when a uniform supersonic incoming flow hits an infinitely long and cu...In this paper, for the full Euler system of the isothermal gas, we show that a globally stable supersonic conic shock wave solution does not exist when a uniform supersonic incoming flow hits an infinitely long and curved sharp conic body.展开更多
When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obs...When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obstacle and is related with the noise problems of aeronautical and other industrial engineering. The characteristic and the mechanism of self-induced flow oscillation, have to be clarified to control various noise problems. But, it seems that the characteristics of the oscillated flowfield and the mechanism of an oscillation have to be more cleared to control the oscillation. This paper aims to clarify the effect of the pressure ratio and the obstacle position and the mechanism of self-induced flow oscillation by numerical analysis and experiment, when the underexpanded su- personic jet impinges on the cylindrical body. From the result of this study, it is clear that occurrence of the self-induced flow osciUation depends on the pressure balance in the flowfield.展开更多
Three types of a-C:Co/Si samples were fabricated using the pulsed laser deposition: Co2-C98/8i with Co dispersed in the a-C film, Co2-C98/Si with Co segregated at the interface, and a-C/Co/Si with Co continuously dist...Three types of a-C:Co/Si samples were fabricated using the pulsed laser deposition: Co2-C98/8i with Co dispersed in the a-C film, Co2-C98/Si with Co segregated at the interface, and a-C/Co/Si with Co continuously distributed at the a-C/Si interface. Both types of Co2-C98/Si samples had the positive bias-voltage-dependent magnetoresistance (MR) at 300 K, and all MRs had saturated behavior. The study on the electrotransport properties indicated that the MR appeared in the diffusion current region, and the mechanism of MR was proposed to be that the applied magnetic field and local random magnetic field caused by the superparamagnetic Co particles modulate the ratio of singlet and triplet spin states, resulting in the MR effect. In addition, the very different physical and structural properties of all samples revealed that Co played a crucial role in the room-temperature positive MR of a-C:Co/Si system.展开更多
Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle f...Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings(perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square(RMS) of pressure oscillation around the airfoil have been reduced with the control method.展开更多
文摘Metastable 40Ar* atoms are produced in the two metastable states 3p54s [3/2]2 and 3p5 4s′ [1/2]0 in a pulsed DC discharge in a beam, and are subsequently excited to the even-parity autoionizing resonance series 3pSnp′[3/2]1,2, 3p5 np′ [1/2]1, and 3p5nf′[5/2]3 using single photon excitation with a pulsed dye laser. The excitation spectra of the even-parity autoion- izing resonance series from the metastable 40Ar* are obtained by recording the autoionized Ar+ ions with time-of-flight ion detection in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of 〈0.1 cm-1. A wealth of autoionizing resonances are newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects are derived.
基金National Key Research and Development Plan(No.2017YFF0204800)Natural Science Foundation of Tianjin(No.17JCQNJC01100)+3 种基金National Natural Science Foundation of China(Nos.61501319,51775377,61505140)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Micro Opto-electro Mechanical System Technology(No.MOMST2015-7)Open Project from Photoelectric Information and Instrument-Engineering Research Center of Beijing,Tianjin University,Ministry of Education(No.GD2015007)
文摘Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.
基金partially supported by the US Department of Energy
文摘A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsedlaser deposition (PLD) systems have focused on achieving thickness uniformity using sequential multilayer deposition and masking followed by post-deposition annealing, MPPLD directly deposits a compositionally varied library of compounds using the directionality of PLD plumes and the resulting spatial variations of deposition rate. This system is more suitable for high-throughput compound thin-film fabrication.
文摘This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative picture of the main features of interest for impingement type of flows. The experiments were carried out for a Reynolds number based on the jet exit conditions of Rej = 4.3 × 10^4, an impingement height of 20.1 jet diameters and for a velocity ratio between the jet exit and the crossflow VR = V/Uo of 22.5. The rear jet is located at S = 6 D downstream of the first jet. The results show a large penetration of the first (upstream)jet that is deflected by the crossflow and impinges on the ground, giving rise to a ground vortex due to the collision of the radial wall and the crossflow that wraps around the impinging point like a scarf. The rear jet (located downstream) it is not so affected by the crossflow in terms of deflection, but due to the downstream wall jet that flows radially from the impinging point of the first jet it does not reach the ground. The results indicate a new flow pattern not yet reported so far, that for a VSTOL aircraft operating in ground vicinity with front wind or small forward movement may result in enhanced under pressures in the aft part of the aircraft causing a suction down force and a change of the pitching moment towards the ground.
基金supported by the National High Technology Research and Development Programme of China(No.2006AA01Z216)
文摘Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large.
文摘Recent results for side-on ignition of uncompressed proton-boron (HB 11) fusion that use the Chu-Bobin side-on ignition with petawatt-picosecond laser pulses is extended to the reaction of helium 3-helium 3 (He3). The HBll reaction resulted in radioactivity is lower values than from burning coal per generated energy. This was based on the very rare experiments with extreme suppression ofpre-pulses in order to suppress relativistic self-focusing. Subsequently, acceleration of highly directed plasma blocks of modest temperature and ultra-high ion current densities above 10H Amps/cm2 were measured in agreement with earlier derived theory. This permits the conditions of the Chu-Bobin for side-on ignition of solid density fusion. Results for similar neutron lean He3 are reported. A detailed comparison with the usual spherical laser compression and ignition of fusion is given for clarifying the basic differences of the ignition process.
基金supported by the National Natural Science Foundation of China(Grant Nos.11135012,10925421,11375262 and 11220101002)the National Basic Research Program of China(Grant No.2013CBA01501)
文摘Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.
文摘In this paper a technique is introduced on visualization of emulsified droplets in gas stream by pulse laser sheet photography. By this technique fairly clear photographs of the concentration and velocity profiles of water droplets in an activation reactor were obtained. The results of the study show that with a venturi tube installed in the activator, the distribution of the droplets is more uniform than without it; the uniformity of the distribution of the droplets can improve the efficiency of the activation of the sorbent particles in the reactor. The picture of the collision of the droplets was obtained in the experiment, which could be used as basis for the study of the mechanism of humidified activation process. The results of the experimental study of the deposition of the droplets on the reactor walls is also described and discussed.
基金supported by the National Natural Science Foundation of China(Nos.11025105,10931007,11101190)the Doctorial Program Foundation of Ministry of Education of China(No.20090091110005)the Natural Science Fundamental Research Project of Jiangsu Colleges(No.10KLB110002)
文摘In this paper, for the full Euler system of the isothermal gas, we show that a globally stable supersonic conic shock wave solution does not exist when a uniform supersonic incoming flow hits an infinitely long and curved sharp conic body.
文摘When the underexpanded supersonic jet impinges on the obstacle, it is well known that the self-induced flow os- cillation occurs. This oscillation depends on the pressure ratio in the flowfield, the position of an obstacle and is related with the noise problems of aeronautical and other industrial engineering. The characteristic and the mechanism of self-induced flow oscillation, have to be clarified to control various noise problems. But, it seems that the characteristics of the oscillated flowfield and the mechanism of an oscillation have to be more cleared to control the oscillation. This paper aims to clarify the effect of the pressure ratio and the obstacle position and the mechanism of self-induced flow oscillation by numerical analysis and experiment, when the underexpanded su- personic jet impinges on the cylindrical body. From the result of this study, it is clear that occurrence of the self-induced flow osciUation depends on the pressure balance in the flowfield.
基金support given by the National Natural Science Foundation of China (Grant Nos. U0734001 and 50772054)the Ministry of Science and Technology of China (Grant Nos. 2008CB617601 and 2009CB929202)
文摘Three types of a-C:Co/Si samples were fabricated using the pulsed laser deposition: Co2-C98/8i with Co dispersed in the a-C film, Co2-C98/Si with Co segregated at the interface, and a-C/Co/Si with Co continuously distributed at the a-C/Si interface. Both types of Co2-C98/Si samples had the positive bias-voltage-dependent magnetoresistance (MR) at 300 K, and all MRs had saturated behavior. The study on the electrotransport properties indicated that the MR appeared in the diffusion current region, and the mechanism of MR was proposed to be that the applied magnetic field and local random magnetic field caused by the superparamagnetic Co particles modulate the ratio of singlet and triplet spin states, resulting in the MR effect. In addition, the very different physical and structural properties of all samples revealed that Co played a crucial role in the room-temperature positive MR of a-C:Co/Si system.
基金carried out with the computational resource support from sub-project CP 3111 (AIF 3rd round) of Higher Education Quality Enhancement Project (HEQEP), UGC, MoE, GoB
文摘Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings(perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square(RMS) of pressure oscillation around the airfoil have been reduced with the control method.