A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever bea...A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever beam forced by the dynamoelectric vibration exciter and a rotational shaft driven by a spindle. It has a widely adjustable range of testing parameters, including the impact frequency, the impact load and the sliding velocity. The avail- able maximum impact frequency, impact load and sliding velocity are 100 Hz, 200 N and 4.52 m/s, respectively. To evaluate the capability of the test rig, tests are carried out and the impact load is measured. Results show that the test rig has the good repeatability under the same test conditions and the repeatable error is less than 7%. Furthermore, non-destructive examination results by the mass loss method, two-dimensional profilometry and the scanning electron microscopy (SEM) show that the test rig can meet the demands for the impact-sliding wear.展开更多
The dorsal surface of a desert lizard has excellent particle erosion resistance.In this paper,a bio-inspired sample was designed and fabricated based on the biological characteristics of the dorsal skin of the desert ...The dorsal surface of a desert lizard has excellent particle erosion resistance.In this paper,a bio-inspired sample was designed and fabricated based on the biological characteristics of the dorsal skin of the desert lizard(Laudakin stoliczkana).The bionic sample consists of two materials with different characteristics,which form a two-layer composite structure.The particle erosion property and erosion wear mechanism of the bionic sample was studied by means of sandblast experiment and numerical simulation,respectively.The experimental results show that,in the stage with steady abrasion rate,the weight loss per unit time of the bionic sample is about 10%lesser than the control sample.The numerical simulation indicated that the two-layer structure of the bionic sample can efficiently absorb the normal stress,and dissipate the stress in the horizontal direction.Thus,the stress concentration on the sample surface is suppressed.The two-layer structure is contributed to the decentralizing of the stress distribution,and thus the occurrence probability of erosion damage can be decreased.展开更多
基金Supported by the National Basic Research Program of China("973"Program)(2007CB607602)~~
文摘A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever beam forced by the dynamoelectric vibration exciter and a rotational shaft driven by a spindle. It has a widely adjustable range of testing parameters, including the impact frequency, the impact load and the sliding velocity. The avail- able maximum impact frequency, impact load and sliding velocity are 100 Hz, 200 N and 4.52 m/s, respectively. To evaluate the capability of the test rig, tests are carried out and the impact load is measured. Results show that the test rig has the good repeatability under the same test conditions and the repeatable error is less than 7%. Furthermore, non-destructive examination results by the mass loss method, two-dimensional profilometry and the scanning electron microscopy (SEM) show that the test rig can meet the demands for the impact-sliding wear.
文摘The dorsal surface of a desert lizard has excellent particle erosion resistance.In this paper,a bio-inspired sample was designed and fabricated based on the biological characteristics of the dorsal skin of the desert lizard(Laudakin stoliczkana).The bionic sample consists of two materials with different characteristics,which form a two-layer composite structure.The particle erosion property and erosion wear mechanism of the bionic sample was studied by means of sandblast experiment and numerical simulation,respectively.The experimental results show that,in the stage with steady abrasion rate,the weight loss per unit time of the bionic sample is about 10%lesser than the control sample.The numerical simulation indicated that the two-layer structure of the bionic sample can efficiently absorb the normal stress,and dissipate the stress in the horizontal direction.Thus,the stress concentration on the sample surface is suppressed.The two-layer structure is contributed to the decentralizing of the stress distribution,and thus the occurrence probability of erosion damage can be decreased.