A numerical model to simulate the bed degradation process in a straight alluvial channel with respect to time and distance is introduced. The simulation takes into account the effect of non uniformity of the bed ma...A numerical model to simulate the bed degradation process in a straight alluvial channel with respect to time and distance is introduced. The simulation takes into account the effect of non uniformity of the bed material, and variations in the dimension of bed forms. The model predicts the changes in the grain size distribution with the time and space during degradation process. The numerical model proposes that the armoring process in degrading channels does not depend only on hydraulic characteristics of the flow but also on variation in the grain size distribution of sediments on the bed. The model was applied and compared with the results obtained from experiments conducted in 24 m recirculating flume for two sizes of sand; a good agreement was found between observed and calculated values.展开更多
文摘A numerical model to simulate the bed degradation process in a straight alluvial channel with respect to time and distance is introduced. The simulation takes into account the effect of non uniformity of the bed material, and variations in the dimension of bed forms. The model predicts the changes in the grain size distribution with the time and space during degradation process. The numerical model proposes that the armoring process in degrading channels does not depend only on hydraulic characteristics of the flow but also on variation in the grain size distribution of sediments on the bed. The model was applied and compared with the results obtained from experiments conducted in 24 m recirculating flume for two sizes of sand; a good agreement was found between observed and calculated values.