期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种一致性的CIMS体系结构:基于QFD的决策集成映射体系
1
作者 程小平 《计算机科学》 CSCD 北大核心 1996年第5期71-72,共2页
一引言计算机集成制造系统(cIMS)的规划与实施是一项复杂的系统工程,成功的关键要素之一是有一个能确保CIMS规划和实施过程总体一致性的体系结构.国际上对cIMS体系结构进行了大量的研究,但由于其规划与实施的复杂性,仍未能有一个体系结... 一引言计算机集成制造系统(cIMS)的规划与实施是一项复杂的系统工程,成功的关键要素之一是有一个能确保CIMS规划和实施过程总体一致性的体系结构.国际上对cIMS体系结构进行了大量的研究,但由于其规划与实施的复杂性,仍未能有一个体系结构能适应CIMS开发过程的所有需求c13.在已提出的CIMS体系结构中,都着重考虑信息集成,而忽视了对于成功实施CIMS至关重要的人和组织结构的集成。 展开更多
关键词 CIMS QFD 决策映射体系 体系结构
下载PDF
多分辨率分析耦合近似稀疏表示的图像融合算法 被引量:1
2
作者 夏文栋 陈德礼 +1 位作者 任江涛 刘远峰 《科学技术与工程》 北大核心 2017年第33期297-303,共7页
为了更好地处理图像高维特征奇异性,并兼顾融合图像目标特征与平均强度信息,提出了一种多分辨率分析与近似稀疏表示的图像融合算法。首先,对源图像进行对尺度分析,分别得到图像的高频和低频信息;然后,设计了近似稀疏表示(sparse represe... 为了更好地处理图像高维特征奇异性,并兼顾融合图像目标特征与平均强度信息,提出了一种多分辨率分析与近似稀疏表示的图像融合算法。首先,对源图像进行对尺度分析,分别得到图像的高频和低频信息;然后,设计了近似稀疏表示(sparse representation,SR),通过近似SR系数来表示图像高频信息和低频信息;并利用绝对最大选择技术对近似SR稀疏转换,得到低频子带的近似系数和高频子带的细节系数,以达到用最少的系数来逼近奇异曲线。其次,构建了决策映射,对相同子带上的各SR系数的活性度和匹配度进行决策分析,输出决策值,通过决策值对图像进行匹配融合。最后,通过多尺度逆变换得到最终的融合图像。仿真实验表明:与当前图像融合算法相比,获得的融合图像具有更好的视觉效果,能有效图像突出目标信息,得到的图像具有更高的平均梯度和边缘评价因子;既突出了目标特征又保留平均强度信息,同时降低噪声影响。 展开更多
关键词 图像融合 多分辨率分析 近似系数表示 最大选择技术 决策映射
下载PDF
网络攻击下电力系统混合入侵防御算法研究 被引量:1
3
作者 胡超 乔治中 黄天明 《微型电脑应用》 2022年第6期124-127,共4页
网络攻击会利用混合型数据对电力系统实施不同频率的攻击,导致系统中数据丢包率加大,网络吞吐量降低,系统响应时间增加,为此研究网络攻击下电力系统混合入侵防御算法。利用PSO算法计算混合数据入侵频率,实现混合入侵数据分类。按照不同... 网络攻击会利用混合型数据对电力系统实施不同频率的攻击,导致系统中数据丢包率加大,网络吞吐量降低,系统响应时间增加,为此研究网络攻击下电力系统混合入侵防御算法。利用PSO算法计算混合数据入侵频率,实现混合入侵数据分类。按照不同频率类型的入侵数据,利用复杂映射决策模型建立入侵响应映射,防御不同频率入侵数据的攻击,并计算入侵数据防御资源的最大容量系数,根据该系数得到算法在电力系统中受限制的位置编号,扫描并隔离处理该位置的信任事务,完成对电力系统混合入侵防御算法的研究。结果表明:在文中提出的防御算法控制下,电力系统的响应时间更短、数据丢包率降低,并有效提升了网络吞吐量,说明该算法适合在电力系统防御中使用。 展开更多
关键词 系统响应时间 PSO算法 复杂映射决策模型 最大容量系数 网络攻击
下载PDF
Mapping of Freshwater Lake Wetlands Using Object-Relations and Rule-based Inference 被引量:1
4
作者 RUAN Renzong Susan USTIN 《Chinese Geographical Science》 SCIE CSCD 2012年第4期462-471,共10页
Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwat... Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet- lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi- cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape fea^xes, and elevation were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were improved by using classification results from object-oriented classification as a context. The results show that the technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im- proved the accuracy of identification by nearly 5%. 展开更多
关键词 rule-based inferring object-based classification freshwater lake wetland relation feature Hongze Lake
下载PDF
Fault Diagnosis Based on MultiKernel Classification and Information Fusion Decision
5
作者 Mohammad Reza Vazifeh Pan Hao Farzaneh Abbasi 《Computer Technology and Application》 2013年第8期404-409,共6页
In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observa... In machine learning and statistics, classification is the a new observation belongs, on the basis of a training set of data problem of identifying to which of a set of categories (sub-populations) containing observations (or instances) whose category membership is known. SVM (support vector machines) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. The basic SVM takes a set of input data and predicts, for each given input, which of two possible classes fon^as the output, making it a non-probabilistic binary linear classifier. In pattern recognition problem, the selection of the features used for characterization an object to be classified is importance. Kernel methods are algorithms that, by replacing the inner product with an appropriate positive definite function, impticitly perform a nonlinear mapping 4~ of the input data in Rainto a high-dimensional feature space H. Cover's theorem states that if the transformation is nonlinear and the dimensionality of the feature space is high enough, then the input space may be transformed into a new feature space where the patterns are linearly separable with high probability. 展开更多
关键词 Fault diagnosis wavelet-kernel information fusion multi classification.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部