The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar ...The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm.Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region.These selected parameters are applied as the inputs of the solar flare prediction model.The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares.It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples,and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares.This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.展开更多
基金supported by the Young Researcher Grant of National Astronomical Observatories,Chinese Academy of Sciencesthe National Basic Research Program of China (Grant No.2011CB811406)the National Natural Science Foundation of China(Grant Nos.10733020,10921303 and 11078010)
文摘The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm.Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region.These selected parameters are applied as the inputs of the solar flare prediction model.The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares.It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples,and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares.This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.