期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
序列检测法在信号调制方式识别中的应用 被引量:2
1
作者 林伟 黄普明 杨新权 《空间电子技术》 2013年第2期85-89,共5页
理论决策法中的固定数据长度方法广泛用于通信信号识别中,文章使用可变长度的序列检测方法来代替它进行调制方式识别。序列检测方法通过设定适当的判决门限在较低信噪比下能达到所需的识别性能。文章仿真表明,在信噪比为4dB时,通过设置... 理论决策法中的固定数据长度方法广泛用于通信信号识别中,文章使用可变长度的序列检测方法来代替它进行调制方式识别。序列检测方法通过设定适当的判决门限在较低信噪比下能达到所需的识别性能。文章仿真表明,在信噪比为4dB时,通过设置合适门限可以使每种调制方式的识别率达到98%左右。与同类的文献[2]对比,文章算法所需要的数据数目更少。 展开更多
关键词 理论决策 调制识别 序列检测
下载PDF
统计成本分析与控制
2
作者 马元三 《江苏统计》 2000年第10期20-22,共3页
本文通过统计方法中的控制图法、决策理论法,对成本控制中的“例外”进行分析,以达到控制成本的目的。
关键词 统计成本 成本控制 控制图 决策理论法
下载PDF
A new decision tree learning algorithm 被引量:3
3
作者 方勇 戚飞虎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期684-689,共6页
In order to improve the generalization ability of binary decision trees, a new learning algorithm, the MMDT algorithm, is presented. Based on statistical learning theory the generalization performance of binary decisi... In order to improve the generalization ability of binary decision trees, a new learning algorithm, the MMDT algorithm, is presented. Based on statistical learning theory the generalization performance of binary decision trees is analyzed, and the assessment rule is proposed. Under the direction of the assessment rule, the MMDT algorithm is implemented. The algorithm maps training examples from an original space to a high dimension feature space, and constructs a decision tree in it. In the feature space, a new decision node splitting criterion, the max-min rule, is used, and the margin of each decision node is maximized using a support vector machine, to improve the generalization performance. Experimental results show that the new learning algorithm is much superior to others such as C4. 5 and OCI. 展开更多
关键词 machine learning decision tree statistical learning theory splitting criteria
下载PDF
Multi-factors decision-making entropy method and its application in engineering management 被引量:2
4
作者 Qiu Wanhua 《Engineering Sciences》 EI 2010年第4期74-79,共6页
In order to meet the strict requirements for information in engineering management, the positive interval (0, 1 ] in Shannon information entropy is extended to the real number interval [ - 1, 1 ]. The information the... In order to meet the strict requirements for information in engineering management, the positive interval (0, 1 ] in Shannon information entropy is extended to the real number interval [ - 1, 1 ]. The information theory and the decision theory are combined effectively, and the deficiencies that the traditional Bayes decision-making methods only consider a single factor are made up for. The multi-factors engineering decision-making methods are proposed, and some critical problems are solved in the practical engineering management decision-making process. 展开更多
关键词 engineering management decision analysis complex entropy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部