期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双层结构的加速K-NN分类方法 被引量:3
1
作者 王晓 赵丽 《计算机工程与设计》 北大核心 2018年第4期1071-1077,共7页
在传统K-NN分类中,对于每个待测样本均需计算并寻找k个决策近邻,分类效率较低。针对该问题,提出一种双层结构的加速K-NN分类(K-NN classification based on double-layer structure,KNN_DL)方法。将正类和负类样本分别划分为多个不同子... 在传统K-NN分类中,对于每个待测样本均需计算并寻找k个决策近邻,分类效率较低。针对该问题,提出一种双层结构的加速K-NN分类(K-NN classification based on double-layer structure,KNN_DL)方法。将正类和负类样本分别划分为多个不同子集,计算每个子集的中心和半径。当新样本进入时,选择k个决策近邻子集,若其具有相同的类别标签,将该样本标记为相应类别;反之,选择决策近邻子集中最近的k个决策近邻。这种双层结构的加速方式,压缩待测样本的决策近邻规模,提高效率。实验结果表明,KNN_DL方法能够获得较高的样本预测速度和较好的预测准确率。 展开更多
关键词 K-NN分类 决策近邻子集 决策近邻样本 中心 半径 KNN_DL方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部