Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A c...Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.展开更多
基金Project 50636010 supported by the National Natural Science Foundation of China
文摘Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.