As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simula...As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study.展开更多
A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch...A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch, such as the ratio and distribution of vapor and liquid, due to the differences in densities and momentums of vapor and liquid in the two-phase flow make equal distribution difficult. This paper describes the distribution characteristics of a four-branch header that has a rectangular cross-section without the internal protrusion of flat tubes in the case of the inflow of the refrigerant R32 from the bottom of the header by using an equipment that can estimate the distribution ratio of the liquid and vapor phase to each branch. This paper also discusses the distribution characteristics on the basis of the flow visualization in the header. The flow visualization shows that a liquid level that contains vapor phase exists in the header and affects the distribution greatly.展开更多
基金Supported by the National Science Fund for Distinguished Young Scholar(51525604)111 project B16038
文摘As one of the main reasons causing leakage heat load in a refrigerator,mass and heat transfer through refrigerator door seal is of great importance to be studied.In this paper,a model is presented for numerical simulation of mass and heat transfer process through refrigerator door seal,and an experiment apparatus is designed and set up as well for comparison.A two-dimensional model and tracer gas method are used in simulation and experiment,respectively.It can be found that the relative deviations of air infiltration rate between the simulated results and experimental results were less than 1%,and the temperature difference errors at two special points of the door seal were less than 2.03℃.In conclusion,the simulated results are in good agreement with the experimental results.This paper initially sets up a model that can accurately simulate the heat and mass transfer through the refrigerator door seal,and the model can be used in refrigerator door seal optimization research in the follow-up study.
文摘A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch, such as the ratio and distribution of vapor and liquid, due to the differences in densities and momentums of vapor and liquid in the two-phase flow make equal distribution difficult. This paper describes the distribution characteristics of a four-branch header that has a rectangular cross-section without the internal protrusion of flat tubes in the case of the inflow of the refrigerant R32 from the bottom of the header by using an equipment that can estimate the distribution ratio of the liquid and vapor phase to each branch. This paper also discusses the distribution characteristics on the basis of the flow visualization in the header. The flow visualization shows that a liquid level that contains vapor phase exists in the header and affects the distribution greatly.