Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown o...Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.展开更多
To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as hea...To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.展开更多
Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SA...Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SAGD production stage injection-production parameters such as the operating pressure, Sub - Cool control, steam injection rate, steam dryness, production factor are studied and selected.展开更多
Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling proper...Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.展开更多
Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety an...Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management(BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.展开更多
A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module.Systematic numerical cal...A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module.Systematic numerical calcu- lations of the vapor to coolant heat transfer have been performed for parametric values of fin height,fin spacing, vertical bundle depth and tubeside heat transfer coefficient.Three dielectric fluids (R-113,FC-72,and FC-87) at atmospheric pressure were selected as the working fluids.For a single tube with optimized fin geometry,the average heat flux increased in the order of FC-87,R-113 and FC-72.Both the optimum fin height and optimum fin spacing increased with increasing vertical bundle depth.展开更多
The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient...The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient new refrigerator works with the Vuilleumier cycle. The novel refrigerator is driven by a thermal compressor which creatively uses mix-refrigerants J-T refrigerator alternative to liquid nitrogen as the power source. Furthermore, the Vuilleumier cycle can be used to achieve temperature below liquid helium with the improvement of the ultra-low temperature regenerator material. A new method of reaching the temperature below 1.7 K is proposed on the regenerative refrigerator, which could be an important breakthrough for the cryogenic science and technology.展开更多
Flywheel energy storage(FES) can have energy fed in the rotational mass of a flywheel,store it as kinetic energy,and release out upon demand.The superconducting energy storage flywheel comprising of magnetic and super...Flywheel energy storage(FES) can have energy fed in the rotational mass of a flywheel,store it as kinetic energy,and release out upon demand.The superconducting energy storage flywheel comprising of magnetic and superconducting bearings is fit for energy storage on account of its high efficiency,long cycle life,wide operating temperature range and so on.According to the high temperature superconducting(HTS) cooling mode,there are zero field cooling(ZFC) bearings and field cooling(FC) bearings.In practice,the superconducting bearings are formed by field-cooled superconductors and permanent magnets(PMs) generally.With respect to the forces between a permanent magnet and a superconductor,there are axial(thrust) bearings and radial(journal) bearings.Accordingly,there are two main types of high-temperature superconducting energy storage flywheels,and if a system comprising both the thrust bearing and the radial bearing will have the characteristics of both types of bearings.Magnetic force,magnetic stiffness and damping are these three main parameters to describe the levitation characteristics.Arrangement and shape of superconductors,thickness of superconductor,superconducting flux creep and critical current density of the superconductor affect the magnetic levitation force of these superconducting bearings.The key factors of FES technology,such as flywheel material,geometry,length and its support system were described,which directly influence the amount of energy storage and flywheel specific energy.All these results presented in this paper indicate that the superconducting energy storage flywheel is an ideal form of energy storage and an attractive technology for energy storage.展开更多
This work aims to numerically study the melting natural convection in a rectangular enclosure heated by three discreet protruding electronic chips. The beat sources generate heat at a constant and uniform volumetric r...This work aims to numerically study the melting natural convection in a rectangular enclosure heated by three discreet protruding electronic chips. The beat sources generate heat at a constant and uniform volumetric rate. A part of the power generated in the heat sources is dissipated to a phase change material (PCM, n-eicosane with melting temperature, Tm = 36℃). Numerical investigations were carded out in order to examine the effects of the plate thickness on the maximum temperature of electronic components, the percentage contribution of plate heat conduction on the total removed heat and temperature profiles in the plate. Con'elations for the dimensionless secured working time (time to reach the threshold temperature, Tcr = 75℃) and the corresponding liquid fraction were derived.展开更多
基金Project(2007BAF02B12)supported by the National Science Technology Support Program of ChinaProjects(E2011203090,E2012203028)supported by the Natural Science Foundation of Hebei Province,China
文摘Aiming at accuracy control of the thermal crown of work rolls in cold rolling,new parameters such as regulation domain and control-efficiency factors were proposed and a numerical analysis model of the thermal crown of work rolls was established using finite difference method to study roll's thermal deformation.Based on simulation results,the influences of control-efficiency factors on thermal crown are presented and the thermal crown of work rolls is analyzed after taking sub-cooling of sprinkling beam into consideration.It has been found that the control-efficiency factor of any position on the roll's surface is linear function of the temperature and the control ability of water temperature is stronger than other control parameters.In addition,the verification of the model has been carried out based on the producing technology data in some factories and the numerical simulation results coincide well with the experimental data.Therefore,this work has important value for on-line control of roll's crown in cold rolling.
基金Project(2011CB707201)supported by the National Basic Research Program of ChinaProject(51376057)supported by the National Natural Science Foundation of China
文摘To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.
文摘Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SAGD production stage injection-production parameters such as the operating pressure, Sub - Cool control, steam injection rate, steam dryness, production factor are studied and selected.
文摘Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.
基金Supported by National Natural Science Foundation of China(No.51376019)
文摘Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management(BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.
文摘A theoretical study has been made to optimize the fin geometry of a horizontal finned tube which is to be used for condensers that handle the vapor load of a liquid phase change cooling module.Systematic numerical calcu- lations of the vapor to coolant heat transfer have been performed for parametric values of fin height,fin spacing, vertical bundle depth and tubeside heat transfer coefficient.Three dielectric fluids (R-113,FC-72,and FC-87) at atmospheric pressure were selected as the working fluids.For a single tube with optimized fin geometry,the average heat flux increased in the order of FC-87,R-113 and FC-72.Both the optimum fin height and optimum fin spacing increased with increasing vertical bundle depth.
基金supported by the National Natural Science Foundation of China (Grant No. 50890181)
文摘The present study proposes a novel refrigerator in theory, which uses 4He as working fluid to directly reach 2.3 K and uses a small amount of 3He to attain the temperature below 1.7 K. The compact and highly efficient new refrigerator works with the Vuilleumier cycle. The novel refrigerator is driven by a thermal compressor which creatively uses mix-refrigerants J-T refrigerator alternative to liquid nitrogen as the power source. Furthermore, the Vuilleumier cycle can be used to achieve temperature below liquid helium with the improvement of the ultra-low temperature regenerator material. A new method of reaching the temperature below 1.7 K is proposed on the regenerative refrigerator, which could be an important breakthrough for the cryogenic science and technology.
基金the Postdoctoral Foundation of China(No. 20060400389)the National High Technology Research and Development Program (863) of China(No. 2006AA05Z241)
文摘Flywheel energy storage(FES) can have energy fed in the rotational mass of a flywheel,store it as kinetic energy,and release out upon demand.The superconducting energy storage flywheel comprising of magnetic and superconducting bearings is fit for energy storage on account of its high efficiency,long cycle life,wide operating temperature range and so on.According to the high temperature superconducting(HTS) cooling mode,there are zero field cooling(ZFC) bearings and field cooling(FC) bearings.In practice,the superconducting bearings are formed by field-cooled superconductors and permanent magnets(PMs) generally.With respect to the forces between a permanent magnet and a superconductor,there are axial(thrust) bearings and radial(journal) bearings.Accordingly,there are two main types of high-temperature superconducting energy storage flywheels,and if a system comprising both the thrust bearing and the radial bearing will have the characteristics of both types of bearings.Magnetic force,magnetic stiffness and damping are these three main parameters to describe the levitation characteristics.Arrangement and shape of superconductors,thickness of superconductor,superconducting flux creep and critical current density of the superconductor affect the magnetic levitation force of these superconducting bearings.The key factors of FES technology,such as flywheel material,geometry,length and its support system were described,which directly influence the amount of energy storage and flywheel specific energy.All these results presented in this paper indicate that the superconducting energy storage flywheel is an ideal form of energy storage and an attractive technology for energy storage.
文摘This work aims to numerically study the melting natural convection in a rectangular enclosure heated by three discreet protruding electronic chips. The beat sources generate heat at a constant and uniform volumetric rate. A part of the power generated in the heat sources is dissipated to a phase change material (PCM, n-eicosane with melting temperature, Tm = 36℃). Numerical investigations were carded out in order to examine the effects of the plate thickness on the maximum temperature of electronic components, the percentage contribution of plate heat conduction on the total removed heat and temperature profiles in the plate. Con'elations for the dimensionless secured working time (time to reach the threshold temperature, Tcr = 75℃) and the corresponding liquid fraction were derived.