Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the ...Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.展开更多
The authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation ...The authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is the greatest during the boreal spring, at approximately 3℃. A sensi- tivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to SST warming. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface.展开更多
We report an experimental generation of polarization-entangled photon pairs in a cold atomic ensemble. A single Stokes photon and one spin-wave excitation are simultaneously created via spontaneous Raman scattering. T...We report an experimental generation of polarization-entangled photon pairs in a cold atomic ensemble. A single Stokes photon and one spin-wave excitation are simultaneously created via spontaneous Raman scattering. The spin-wave excitation is then converted into an anti-Stokes photon via an electromagnetic-induced-transparency reading process. The measured cross-correlation functions between the Stokes and anti-Stokes photons for two orthogonal polarizations are -75 and 74, respectively, at a generation rate of the photon pair of -60/s. Based on such correlations, we obtain polarization-entangled photon pairs, whose Bell parameter is S = 2.77 4- 0.01, violating Bell-CHSH inequality by -77 standard deviations. The presented polarization-entangled photon source has high entanglement degree and fast generation rate, which will promise us to apply it in future quantum repeater.展开更多
In the present paper the problem of nonlinear interaction of two mildly-relativistic circularly polarized lasers in a cold plasma is studied in order to investigate electromagneticaily induced transparency (EIT). Ba...In the present paper the problem of nonlinear interaction of two mildly-relativistic circularly polarized lasers in a cold plasma is studied in order to investigate electromagneticaily induced transparency (EIT). Based on a relativistic kinetic model, by expansion of relativistic Lorentz factor in terms of lasers amplitude, we obtain the coupled nonlinear dispersion relations. It is observed that due to resonance in the second harmonic of plasma beat-wave, the new EIT pass-band is created in the high intensities of lasers. The effect of amplitude and frequency variation on the dispersion is numerically investigated.展开更多
Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary la...Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.展开更多
The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a lar...The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a large bias field of 0.53 T is achieved in the Ni50Mn34In16-xFex(x=1,3,5)system by tuning the magnetic ground state(determined by the composition x)and the magnetic-field history(determined by the magnetic field HFCduring field cooling and the maximum field HMaxduring isothermal magnetization).The maximum volume fraction of the interfaces between the ferromagnetic clusters and antiferromagnetic matrix and the strong interfacial interaction are achieved by tuning the magnetic ground state and the magnetic-field history,which results in strong magnetic unidirectional anisotropy and the large exchange bias.Moreover,two guidelines were proposed to obtain the large bias field.Firstly,the composition with a magnetic ground state consisting of the dilute spin glass and the strong antiferromagnetic matrix is preferred to obtain a large bias field;secondly,tuning the magnetic-field history by enhancing HFCand reducing HMaxis beneficial to achieving large exchange bias.Our work provides an effective way for designing magnetically inhomogeneous compounds with large exchange bias.展开更多
基金Project(51341004)supported by the National Natural Science Foundation of ChinaProject(S050ITP7005)supported by the Shanghai Jiao Tong University Undergraduate Innovative Practice Program,China
文摘Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB950502, 2010CB951904,and 2010AA012303)LASG Free Exploration Fundthe National Natural Science Foundation of China (Grant Nos. 40906012 and 40775054)
文摘The authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is the greatest during the boreal spring, at approximately 3℃. A sensi- tivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to SST warming. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface.
基金the National Basic Research Program of China (2010CB923103)the National Natural Science Foundation of China (11475109, 11274211 and 60821004)
文摘We report an experimental generation of polarization-entangled photon pairs in a cold atomic ensemble. A single Stokes photon and one spin-wave excitation are simultaneously created via spontaneous Raman scattering. The spin-wave excitation is then converted into an anti-Stokes photon via an electromagnetic-induced-transparency reading process. The measured cross-correlation functions between the Stokes and anti-Stokes photons for two orthogonal polarizations are -75 and 74, respectively, at a generation rate of the photon pair of -60/s. Based on such correlations, we obtain polarization-entangled photon pairs, whose Bell parameter is S = 2.77 4- 0.01, violating Bell-CHSH inequality by -77 standard deviations. The presented polarization-entangled photon source has high entanglement degree and fast generation rate, which will promise us to apply it in future quantum repeater.
文摘In the present paper the problem of nonlinear interaction of two mildly-relativistic circularly polarized lasers in a cold plasma is studied in order to investigate electromagneticaily induced transparency (EIT). Based on a relativistic kinetic model, by expansion of relativistic Lorentz factor in terms of lasers amplitude, we obtain the coupled nonlinear dispersion relations. It is observed that due to resonance in the second harmonic of plasma beat-wave, the new EIT pass-band is created in the high intensities of lasers. The effect of amplitude and frequency variation on the dispersion is numerically investigated.
基金supported by the CAS Strategic Priority Research Program (Grant No. XDA05110304)the National Basic Research Program of China (Grant No. 2015CB954102)the National Natural Science Foundation of China (Grant Nos. 41205079 & 41305040)
文摘Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.
基金supported by the National Natural Science Foundation of China(51471127,51431007 and 51371134)the Program for Young Scientific New-star in Shaanxi Province of China(2014KJXX-35)+2 种基金the Innovation Capability Support Program of Shaanxi(2018PT-28 and 2017KTPT-04)Shenzhen Science and Technology Project(JCYJ20180507182246321)the Fundamental Research Funds for Central Universities of China。
文摘The exchange bias is of technological significance in magnetic recording and spintronic devices.Pursuing a large bias field is a long-term goal for the research field of magnetic shape memory alloys.In this work,a large bias field of 0.53 T is achieved in the Ni50Mn34In16-xFex(x=1,3,5)system by tuning the magnetic ground state(determined by the composition x)and the magnetic-field history(determined by the magnetic field HFCduring field cooling and the maximum field HMaxduring isothermal magnetization).The maximum volume fraction of the interfaces between the ferromagnetic clusters and antiferromagnetic matrix and the strong interfacial interaction are achieved by tuning the magnetic ground state and the magnetic-field history,which results in strong magnetic unidirectional anisotropy and the large exchange bias.Moreover,two guidelines were proposed to obtain the large bias field.Firstly,the composition with a magnetic ground state consisting of the dilute spin glass and the strong antiferromagnetic matrix is preferred to obtain a large bias field;secondly,tuning the magnetic-field history by enhancing HFCand reducing HMaxis beneficial to achieving large exchange bias.Our work provides an effective way for designing magnetically inhomogeneous compounds with large exchange bias.