[Objective] The aim was to study on temporal-spatial distribution model of cold chain logistics for vegetables. [Method] Broccoli was taken as an example. Detailedly, time-space distribution model of cold chain logist...[Objective] The aim was to study on temporal-spatial distribution model of cold chain logistics for vegetables. [Method] Broccoli was taken as an example. Detailedly, time-space distribution model of cold chain logistics for broccoli was proposed from standpoints of costs and benefits based on changes of time and space, and a comprehensive evaluation was made on timeliness, efficiency, risks, added- value of products and satisfaction of information in cold-chain logistics. [Result] The efficiency of cold chain logistics for vegetable can be greatly improved by temporal- spatial distribution model of cold chain logistics. [Conclusion] Costs and benefits of vegetables in temporal-apstial distribution could be evaluated by the model.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
基金Supported by Tianjin Science and Technology Development Project (060YFGNC1900)National Key Technology R&D Program in the 11th Five-year Plan of China(2012BAD38B01)~~
文摘[Objective] The aim was to study on temporal-spatial distribution model of cold chain logistics for vegetables. [Method] Broccoli was taken as an example. Detailedly, time-space distribution model of cold chain logistics for broccoli was proposed from standpoints of costs and benefits based on changes of time and space, and a comprehensive evaluation was made on timeliness, efficiency, risks, added- value of products and satisfaction of information in cold-chain logistics. [Result] The efficiency of cold chain logistics for vegetable can be greatly improved by temporal- spatial distribution model of cold chain logistics. [Conclusion] Costs and benefits of vegetables in temporal-apstial distribution could be evaluated by the model.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.