针对二次泵变流量空调冷冻水系统采取的回水温度PID控制方式,往往导致稳态误差与超调量均较大和调节时间较长等问题。鉴于此,提出了回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级控制策略和改进的粒子群算法实施串级控制器参数整定的设计...针对二次泵变流量空调冷冻水系统采取的回水温度PID控制方式,往往导致稳态误差与超调量均较大和调节时间较长等问题。鉴于此,提出了回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级控制策略和改进的粒子群算法实施串级控制器参数整定的设计方案。根据二次泵变流量空调冷冻水系统的工艺要求和相关自动控制理论,对该回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级系统的各个组成环节,如主、副被控对象及回水温度PI^(λ)D^(μ)控制器(Fractional Order PID Controller for Backwater Temperature,BT-FOPIDC)和供水流量PI^(λ)控制器(Fractional Order PI Controller for the Flow of Water Supply,FWS-FOPIC)等进行建模。引入正切三角函数对基本粒子群算法中的惯性权重进行非线性递减的改变,构建改进的粒子群算法(Modified Particle Swarm Algorithm,MPSA),对这两个串级控制器的参数进行整定,获取8个参数最佳值。借助MATLAB软件,对该回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级系统进行组态和仿真运行。结果表明,该分数阶串级控制系统及其基于MPSA的控制器参数整定在理论上是可行的,且控制效果优于传统的回水温度PID单回路控制系统。展开更多
供、回水压差对于空调一次泵变流量冷冻水系统(Primary Pump Variable Flow System of Air-Conditioning Chilled Water,ACCW-PPVFS)的水力平衡和适应空调用户侧冷负荷的动态变化是至关重要的。目前,其较多采用整数阶PID调节方式,这会...供、回水压差对于空调一次泵变流量冷冻水系统(Primary Pump Variable Flow System of Air-Conditioning Chilled Water,ACCW-PPVFS)的水力平衡和适应空调用户侧冷负荷的动态变化是至关重要的。目前,其较多采用整数阶PID调节方式,这会导致出现供、回水压差的稳态误差、超调量较大和振荡过度等问题。鉴于此,本文提出了ACCW-PPVFS供、回水压差的分数阶PID(PI^(λ)D^(μ))分级调节方式和改进的生物地理学优化算法(Modified Biogeography-Based Optimization Algorithm,MBBOA)进行相应PIλDμ控制器参数整定的设计理念。首先,综合空调工艺要求和自动控制理论,对该ACCW-PPVFS供、回水压差控制系统中的各个环节,如供、回水压差被控对象、供、回水压差PI^(λ)D^(μ)控制器(Fractional Order PID Controller for Pressure Difference between Supply and Return Water,PDSRW-FOPIDC)、变频水泵和旁通水流量执行器等建立传递函数。其次,通过对生物地理学优化算法中的迁移因子(Migration Factor)φ进行线性递减改变,构建出MBBOA,且对该PDSRW-FOPIDC参数进行整定,获取5个参数最优值。同时,采取分级控制策略,分别对一次泵和分、集水器之间的旁通执行器进行变频和旁通流量qbypass的调节,以适应空调用户侧负荷的大、小需求和保证供、回水压差ΔP等于其设定值ΔPset。最后,借助MATLAB中的Simulink工具,对该供、回水压差PI^(λ)D^(μ)控制系统进行组态和数值仿真。结果表明:基于MBBOA的供、回水压差PI^(λ)D^(μ)控制器参数整定和该供、回水压差PI^(λ)D^(μ)控制系统在理论上是可行的,可适应空调用户侧冷负荷的动态变化,且满足ΔP=ΔPset空调工艺的相关要求和维持水力平衡。展开更多
文摘针对二次泵变流量空调冷冻水系统采取的回水温度PID控制方式,往往导致稳态误差与超调量均较大和调节时间较长等问题。鉴于此,提出了回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级控制策略和改进的粒子群算法实施串级控制器参数整定的设计方案。根据二次泵变流量空调冷冻水系统的工艺要求和相关自动控制理论,对该回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级系统的各个组成环节,如主、副被控对象及回水温度PI^(λ)D^(μ)控制器(Fractional Order PID Controller for Backwater Temperature,BT-FOPIDC)和供水流量PI^(λ)控制器(Fractional Order PI Controller for the Flow of Water Supply,FWS-FOPIC)等进行建模。引入正切三角函数对基本粒子群算法中的惯性权重进行非线性递减的改变,构建改进的粒子群算法(Modified Particle Swarm Algorithm,MPSA),对这两个串级控制器的参数进行整定,获取8个参数最佳值。借助MATLAB软件,对该回水温度PI^(λ)D^(μ)-供水流量PI^(λ)串级系统进行组态和仿真运行。结果表明,该分数阶串级控制系统及其基于MPSA的控制器参数整定在理论上是可行的,且控制效果优于传统的回水温度PID单回路控制系统。
文摘供、回水压差对于空调一次泵变流量冷冻水系统(Primary Pump Variable Flow System of Air-Conditioning Chilled Water,ACCW-PPVFS)的水力平衡和适应空调用户侧冷负荷的动态变化是至关重要的。目前,其较多采用整数阶PID调节方式,这会导致出现供、回水压差的稳态误差、超调量较大和振荡过度等问题。鉴于此,本文提出了ACCW-PPVFS供、回水压差的分数阶PID(PI^(λ)D^(μ))分级调节方式和改进的生物地理学优化算法(Modified Biogeography-Based Optimization Algorithm,MBBOA)进行相应PIλDμ控制器参数整定的设计理念。首先,综合空调工艺要求和自动控制理论,对该ACCW-PPVFS供、回水压差控制系统中的各个环节,如供、回水压差被控对象、供、回水压差PI^(λ)D^(μ)控制器(Fractional Order PID Controller for Pressure Difference between Supply and Return Water,PDSRW-FOPIDC)、变频水泵和旁通水流量执行器等建立传递函数。其次,通过对生物地理学优化算法中的迁移因子(Migration Factor)φ进行线性递减改变,构建出MBBOA,且对该PDSRW-FOPIDC参数进行整定,获取5个参数最优值。同时,采取分级控制策略,分别对一次泵和分、集水器之间的旁通执行器进行变频和旁通流量qbypass的调节,以适应空调用户侧负荷的大、小需求和保证供、回水压差ΔP等于其设定值ΔPset。最后,借助MATLAB中的Simulink工具,对该供、回水压差PI^(λ)D^(μ)控制系统进行组态和数值仿真。结果表明:基于MBBOA的供、回水压差PI^(λ)D^(μ)控制器参数整定和该供、回水压差PI^(λ)D^(μ)控制系统在理论上是可行的,可适应空调用户侧冷负荷的动态变化,且满足ΔP=ΔPset空调工艺的相关要求和维持水力平衡。