Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through...Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.展开更多
A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in...A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in this paper. Indirect evaporative cooler is used for sensible cooling of air which then is used for air conditioning purposes. Mathematical model was developed allowing determining heat transfer surface, outlet air temperature and specific humidity of the air being cooled. To make the model simpler some simplifications have been incorporated. The model has high level of correctness and can be used to calculate and design different types of evaporative heat exchangers. Analysis of results of calculations by the help of the developed model prove that the surface of heat exchanger depends on the thickness of water film layer by the regularity of direct proportionality. Moreover, increasing of the water film thickness brings to the decreasing of the efficiency of evaporative type heat exchanger. The model can be used for correct calculation and design of an evaporative cooling air conditioning systems.展开更多
This paper describes a particular stack performance realized in a building (school) at real scale by computation of the wind induced ventilation and a comparison of the stack performance (airflow rate extracted and...This paper describes a particular stack performance realized in a building (school) at real scale by computation of the wind induced ventilation and a comparison of the stack performance (airflow rate extracted and wind speed) respect to other systems (wind catcher, wind jetter and wind turbine) are also showed. The realization of the system, actually working, shows the synergy between a plant design and installation using traditional energy sources with innovative engineering techniques providing for the use of integrative energy. In this case, the wind action plays an important role for the conditioning of the school, integrating and giving a significant energetic contribution to the air cooling system. The school building (a nursery) has been built in Modena and is actually working.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperat...In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.展开更多
The need for moving away from traditional energy sources and to find alternate energy sources is undoubtedly one of the primary objectives for a sustainable progress to humankind. The design and construction of buildi...The need for moving away from traditional energy sources and to find alternate energy sources is undoubtedly one of the primary objectives for a sustainable progress to humankind. The design and construction of buildings in hot-humid climates requires high energy consumption typically for air conditioning due to higher thermal loads. In the Gulf Region, there is a rising concern on the current rate of energy consumption due to air conditioning, i.e. two thirds of domestic electrical loads. Considering the wider impacts of carbon emissions on our climate, and the need to reduce these emissions, effective energy efficiency solutions are necessary in order to achieve the overall goal of reducing carbon emissions. This paper presents the performance of the “All in One” fully integrated solar desiccant air conditioning system. The superefficient air conditioning system can provide 1,000 to 2,000 litre/s treated fresh air at supply temperature of 16 °C with 60% reduction in energy consumption compared to conventional systems. The system is locally manufactured and installed.展开更多
The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dr...The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.展开更多
基金supported by the key project of National Natural Science Foundation ‘‘Deep Heat Governance and Utilization’’ (Nos.51134005 and 41402273)the Doctoral Fund of Ministry of Education (No. 20130023110021)
文摘Regarding the complexity and inconsistency of results in existing evaluation methods of mine cooling system, this paper clarifies the advantages, disadvantages and application of various mine cooling sys- tems through principle analysis, and divides all the cooling systems into air-cooling, ice-cooling and water-cooling according to the transportation of cold energy. On this basis, the paper proposes a simple and efficient evaluation method for mine cooling system. The first index of this method is the air temper- ature at point C which is 15 m away from the return wind corner at working face. A cooling system will be judged ineligible if the air temperature at point C is above 30 ℃ during operation, because in this case, the combustible gases in coal will sharply overflow, inducing gas incidents. Based on the preliminary judg- ment of the first index, another two evaluation indexes are proposed based on the cooling ability and dehumidification of an airflow volume of 1000 m3/min at point C to evaluate the investment and opera- tion cost of mine cooling system. This evaluation method has already been successfully applied in the cooling system design of Zhangshuanglou coal mine.
文摘A simplified model for analysis of heat and mass transfer between air stream and flowing down water film in counter-flow plate heat exchanger which serves as an indirect evaporative cooler is theoretically analyzed in this paper. Indirect evaporative cooler is used for sensible cooling of air which then is used for air conditioning purposes. Mathematical model was developed allowing determining heat transfer surface, outlet air temperature and specific humidity of the air being cooled. To make the model simpler some simplifications have been incorporated. The model has high level of correctness and can be used to calculate and design different types of evaporative heat exchangers. Analysis of results of calculations by the help of the developed model prove that the surface of heat exchanger depends on the thickness of water film layer by the regularity of direct proportionality. Moreover, increasing of the water film thickness brings to the decreasing of the efficiency of evaporative type heat exchanger. The model can be used for correct calculation and design of an evaporative cooling air conditioning systems.
文摘This paper describes a particular stack performance realized in a building (school) at real scale by computation of the wind induced ventilation and a comparison of the stack performance (airflow rate extracted and wind speed) respect to other systems (wind catcher, wind jetter and wind turbine) are also showed. The realization of the system, actually working, shows the synergy between a plant design and installation using traditional energy sources with innovative engineering techniques providing for the use of integrative energy. In this case, the wind action plays an important role for the conditioning of the school, integrating and giving a significant energetic contribution to the air cooling system. The school building (a nursery) has been built in Modena and is actually working.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.
文摘The need for moving away from traditional energy sources and to find alternate energy sources is undoubtedly one of the primary objectives for a sustainable progress to humankind. The design and construction of buildings in hot-humid climates requires high energy consumption typically for air conditioning due to higher thermal loads. In the Gulf Region, there is a rising concern on the current rate of energy consumption due to air conditioning, i.e. two thirds of domestic electrical loads. Considering the wider impacts of carbon emissions on our climate, and the need to reduce these emissions, effective energy efficiency solutions are necessary in order to achieve the overall goal of reducing carbon emissions. This paper presents the performance of the “All in One” fully integrated solar desiccant air conditioning system. The superefficient air conditioning system can provide 1,000 to 2,000 litre/s treated fresh air at supply temperature of 16 °C with 60% reduction in energy consumption compared to conventional systems. The system is locally manufactured and installed.
基金National Natural Science Foundation of China and Shenhua Group Corporation Limited(Grant No.U1261108)The Science and Technology Program of China Huaneng Group(Grant No.HNKJ13-H09)
文摘The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.