In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fa...In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fan rotor outlet us- ing an I-type hot-wire probe. The probe was set toward two directions, parallel and normal to the meridional plane of test fan, and the two directional velocity components were measured. From the result of fan test it was found that the test fan didn't have the unstable characteristic with a positive gradient on its pressure - flow-rate curve. From the results of velocity measurement it was observed that the tip leakage vortex exited at maximum efficiency flow-rate and large flow-rate conditions. However, at small flow-rate conditions the tip leakage vortex was not observed and it was found that the flow field were enlarged toward radial outwards展开更多
This study examines experimentally the effect of stators on the performance and heat transfer characteristics of small axial cooling fans. A single fan impeller, followed by nine stator blades in the case of a complet...This study examines experimentally the effect of stators on the performance and heat transfer characteristics of small axial cooling fans. A single fan impeller, followed by nine stator blades in the case of a complete stage, was used for all the experimental configurations. Performance measurements were carried out in a constant speed stage performance test rig while the transient liquid crystal technique was used for the heat transfer measurements. Full surface heat transfer coefficient distributions were obtained by recording the temperature history of liquid crystals on a target plate. The experimental data indicated that the results are highly affected by the flow conditions at the fan outlet. Stators can be beneficial in terms of pressure drop and efficiency, and thus more economical operation, as well as, in the local heat transfer distribution at the wake of the stator blades if the fan is installed very close to the cooling object. However, as the separation distance increases, enhanced heat transfer rate in the order of 25% is observed in the case of the fan impeller.展开更多
Most evaporative cooling towers are arranged on building roof due to the limitation of space and noise,and acoustic barriers are always installed around cooling towers in practical applications.The existence of acoust...Most evaporative cooling towers are arranged on building roof due to the limitation of space and noise,and acoustic barriers are always installed around cooling towers in practical applications.The existence of acoustic barriers and crosswind may affect the recirculation phenomenon which is directly related to the operating performance of cooling towers.In this study,a physical and mathematical computation model is proposed to research the crosswind and distance between acoustic barriers and inlet of cooling towers.Both sensible and latent heat are considered in this research.The reflux flow rate and performance ratio are obtained to evaluate the recirculation and operating performance,respectively.The results show that the higher the crosswind velocity,the larger the reflux flow rate,and the lower the performance ratio of cooling tower groups.For high crosswind velocity,the presence of acoustic barriers is useful to inhibit reflux and improve operating performance,especially for ICE cooling tower groups.In addition,the optimum values are recommended for LiBrllCE cooling tower groups in the research cases The variation of reflux flow rate and performance ratio with the acoustic barriers' distance presents a parabolic tendency.展开更多
Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe...Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.展开更多
文摘In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fan rotor outlet us- ing an I-type hot-wire probe. The probe was set toward two directions, parallel and normal to the meridional plane of test fan, and the two directional velocity components were measured. From the result of fan test it was found that the test fan didn't have the unstable characteristic with a positive gradient on its pressure - flow-rate curve. From the results of velocity measurement it was observed that the tip leakage vortex exited at maximum efficiency flow-rate and large flow-rate conditions. However, at small flow-rate conditions the tip leakage vortex was not observed and it was found that the flow field were enlarged toward radial outwards
文摘This study examines experimentally the effect of stators on the performance and heat transfer characteristics of small axial cooling fans. A single fan impeller, followed by nine stator blades in the case of a complete stage, was used for all the experimental configurations. Performance measurements were carried out in a constant speed stage performance test rig while the transient liquid crystal technique was used for the heat transfer measurements. Full surface heat transfer coefficient distributions were obtained by recording the temperature history of liquid crystals on a target plate. The experimental data indicated that the results are highly affected by the flow conditions at the fan outlet. Stators can be beneficial in terms of pressure drop and efficiency, and thus more economical operation, as well as, in the local heat transfer distribution at the wake of the stator blades if the fan is installed very close to the cooling object. However, as the separation distance increases, enhanced heat transfer rate in the order of 25% is observed in the case of the fan impeller.
文摘Most evaporative cooling towers are arranged on building roof due to the limitation of space and noise,and acoustic barriers are always installed around cooling towers in practical applications.The existence of acoustic barriers and crosswind may affect the recirculation phenomenon which is directly related to the operating performance of cooling towers.In this study,a physical and mathematical computation model is proposed to research the crosswind and distance between acoustic barriers and inlet of cooling towers.Both sensible and latent heat are considered in this research.The reflux flow rate and performance ratio are obtained to evaluate the recirculation and operating performance,respectively.The results show that the higher the crosswind velocity,the larger the reflux flow rate,and the lower the performance ratio of cooling tower groups.For high crosswind velocity,the presence of acoustic barriers is useful to inhibit reflux and improve operating performance,especially for ICE cooling tower groups.In addition,the optimum values are recommended for LiBrllCE cooling tower groups in the research cases The variation of reflux flow rate and performance ratio with the acoustic barriers' distance presents a parabolic tendency.
文摘Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.