The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five dif...The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method.The results show that at higher cooling rates,the primary α(Al) dendrite nucleation temperature,eutectic reaction temperature and solidus temperature shift to lower temperatures.Besides,with increasing cooling rate from 0.19 ℃/s up to 6.25 ℃/s,the secondary dendritic arm spacing decreases from 68 μm to 20 μm,and the primary dendritic volume fraction declines by approximately 5%.In addition,it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution.It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology,and decreasing block or lamella shape eutectic silicon.展开更多
A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of th...A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of the solution is proved and the conditions for the coolant flux under which the abladtion process will complete in finite time are also determined. Finally, we show the existence of critical coolant flux beyond which the ablation material begin melting.展开更多
[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical ev...[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical evaluation model for chilling tolerance of cotton, thus providing theoretical basis for breeding and promoting new chilling-tolerant cotton germplasms and large-scale evaluation of chilling tolerance of cotton varieties. [Method] Fifteen cotton varieties (lines) were used as experimental materials. The photosynthetic gas exchange parameters, chlorophyll fluorescence ki- netic parameters, chlorophyll content, relative soluble sugar content, malonaldehyde content, relative proiine content, relative conductivity and other 12 physiological indi- cators of seedling leaves under low temperature treatment (5 ℃, 12 h) and recovery treatment (25 ℃. 24 h) were determined; based on the chilling tolerance coefficient (CTC) of various individual indicators, the comprehensive evaluation of chilling toler- ance was conducled by using principal component analysis, hierarchical cluster anal- ysis and stepwise regression analysis. [Result] The results showed that the 12 indi- vidual physiological indicators could be classified into 7 independent comprehensive components by principal component analysis; 15 cotton varieties (lines) were clus- tered into three categories by using membership function method and hierarchical cluster analysis; the mathematical model for evaluating chilling tolerance of cotton seedlings was established: D =0.275 -0.244Fo1 +0.206Fv/Fm1+0.326g,%-0.056SS + 0.225MDA+O.O38REC (FF=0.995), and the evaluation accuracy of the equation was higher than 94.25%,0. Six identification indicators closely related to chilling tolerance were screened, including Fo,, Fv/Fm1, Seedling leaves of cotton varieties (lines) gs2, SS, MDA, and REC. [Conclusion] with high chilling tolerance are less dam- aged under low temperature stress, and are able to maintain relatively high photo- synthetic electron transport capacity and high stomatal conductance after recovery treatment, which is contributed to gas exchange and recovery of photosynthetic ca- pacity. Determination of the six indicators under the same stress condition can be adopted for rapid identification and prediction of the chilling tolerance of other cotton varieties, which provides basis for the breeding, promotion, identification and screen- ing of chilling tolerant germplasms.展开更多
基金Projects (2005CB724105,2011CB706801) supported by the National Basic Research Program of ChinaProjects (10477010,51171089) supported by the National Natural Science Foundation of ChinaProjects (2009ZX04006-041-04,2011ZX04014-052) supported by the Important National Science&Technology Specific,China
文摘The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method.The results show that at higher cooling rates,the primary α(Al) dendrite nucleation temperature,eutectic reaction temperature and solidus temperature shift to lower temperatures.Besides,with increasing cooling rate from 0.19 ℃/s up to 6.25 ℃/s,the secondary dendritic arm spacing decreases from 68 μm to 20 μm,and the primary dendritic volume fraction declines by approximately 5%.In addition,it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution.It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology,and decreasing block or lamella shape eutectic silicon.
文摘A controlled model of thermal shield of ablation with trapspiration cooling is develoed. The existence and uniqueness of the classical solution can be obtained by Friedman and Jiang's methods. The positivity of the solution is proved and the conditions for the coolant flux under which the abladtion process will complete in finite time are also determined. Finally, we show the existence of critical coolant flux beyond which the ablation material begin melting.
基金Supported by"11thFive-Year Plan"National Science and Technology Support Program(2009BADA4B01-3)~~
文摘[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical evaluation model for chilling tolerance of cotton, thus providing theoretical basis for breeding and promoting new chilling-tolerant cotton germplasms and large-scale evaluation of chilling tolerance of cotton varieties. [Method] Fifteen cotton varieties (lines) were used as experimental materials. The photosynthetic gas exchange parameters, chlorophyll fluorescence ki- netic parameters, chlorophyll content, relative soluble sugar content, malonaldehyde content, relative proiine content, relative conductivity and other 12 physiological indi- cators of seedling leaves under low temperature treatment (5 ℃, 12 h) and recovery treatment (25 ℃. 24 h) were determined; based on the chilling tolerance coefficient (CTC) of various individual indicators, the comprehensive evaluation of chilling toler- ance was conducled by using principal component analysis, hierarchical cluster anal- ysis and stepwise regression analysis. [Result] The results showed that the 12 indi- vidual physiological indicators could be classified into 7 independent comprehensive components by principal component analysis; 15 cotton varieties (lines) were clus- tered into three categories by using membership function method and hierarchical cluster analysis; the mathematical model for evaluating chilling tolerance of cotton seedlings was established: D =0.275 -0.244Fo1 +0.206Fv/Fm1+0.326g,%-0.056SS + 0.225MDA+O.O38REC (FF=0.995), and the evaluation accuracy of the equation was higher than 94.25%,0. Six identification indicators closely related to chilling tolerance were screened, including Fo,, Fv/Fm1, Seedling leaves of cotton varieties (lines) gs2, SS, MDA, and REC. [Conclusion] with high chilling tolerance are less dam- aged under low temperature stress, and are able to maintain relatively high photo- synthetic electron transport capacity and high stomatal conductance after recovery treatment, which is contributed to gas exchange and recovery of photosynthetic ca- pacity. Determination of the six indicators under the same stress condition can be adopted for rapid identification and prediction of the chilling tolerance of other cotton varieties, which provides basis for the breeding, promotion, identification and screen- ing of chilling tolerant germplasms.