Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by ho...The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by homogenization exhibited an enhancement in the tensile strength, yield strength, and elongation by 29%, 41%, and 11%, respectively, as compared with a sample processed by the conventional homogenization treatment. The stress-strain curve of the sample processed by the homogenization treatment exhibited the Portevin-Le Chatelier effect, whereas the sample processed by the cryogenic treatment did not. Further, the cryogenic treatment could accelerate the precipitation of secondary phase particles for the sample processed by a deep cryogenic treatment, followed by a homogenization treatment, which enhanced the dislocation pinning effect of the solvent atoms and thus improved the critical strain.展开更多
In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrus...In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.展开更多
In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness...In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.展开更多
The solution heat treatment,cold deformation and subsequent aging were performed on CuMoCr alloy.And the influence of deformation and aging treatment on the electrical conductivity of CuMoCr alloy was studied through ...The solution heat treatment,cold deformation and subsequent aging were performed on CuMoCr alloy.And the influence of deformation and aging treatment on the electrical conductivity of CuMoCr alloy was studied through metallograph,transmission electron microscopy(TEM) and electrical conductivity measurement.Results show that deformation without subsequent aging can reduce the electrical conductivity of CuMoCr alloy,but deformation followed by the optimum aging treatment can effectively improve the electrical conductivity of CuMoCr alloy.Aging at 500 ℃ for 4 h after 80% deformation,the much better electrical conductivity of CuMoCr alloy can be obtained.Reduction of Cr content in the Cu matrix could be the reason for the enhancement of electrical conductivity.展开更多
Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing...Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.展开更多
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
基金Project(2011BAC10B02)supported by the National Key Technology R&D Program of China
文摘The mechanical properties of 3104 aluminum alloy processed by different combinations of cryogenic and homogenization treatments were studied. The 3104 aluminum alloy processed by the cryogenic treatment followed by homogenization exhibited an enhancement in the tensile strength, yield strength, and elongation by 29%, 41%, and 11%, respectively, as compared with a sample processed by the conventional homogenization treatment. The stress-strain curve of the sample processed by the homogenization treatment exhibited the Portevin-Le Chatelier effect, whereas the sample processed by the cryogenic treatment did not. Further, the cryogenic treatment could accelerate the precipitation of secondary phase particles for the sample processed by a deep cryogenic treatment, followed by a homogenization treatment, which enhanced the dislocation pinning effect of the solvent atoms and thus improved the critical strain.
基金Project(51674077) supported by the National Natural Science Foundation of ChinaProject(2018YFB2001800) supported by the National Research and Development Program of China
文摘In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.
文摘In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.
文摘The solution heat treatment,cold deformation and subsequent aging were performed on CuMoCr alloy.And the influence of deformation and aging treatment on the electrical conductivity of CuMoCr alloy was studied through metallograph,transmission electron microscopy(TEM) and electrical conductivity measurement.Results show that deformation without subsequent aging can reduce the electrical conductivity of CuMoCr alloy,but deformation followed by the optimum aging treatment can effectively improve the electrical conductivity of CuMoCr alloy.Aging at 500 ℃ for 4 h after 80% deformation,the much better electrical conductivity of CuMoCr alloy can be obtained.Reduction of Cr content in the Cu matrix could be the reason for the enhancement of electrical conductivity.
基金Projects(51375070,51574058) supported by the National Natural Science Foundation of China
文摘Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.