期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
转炉-高线生产SWRM6优质低碳低硅钢盘条工艺实践
1
作者 周涛 王跃华 +1 位作者 袁永 蒋鲜林 《浙江冶金》 2005年第4期28-31,共4页
全面总结杭钢转炉-高线生产 SWRM6优质低碳低硅钢盘条工艺实践,并对 SWRM6的生产结果进行分析,结果表明杭钢具备生产用于深加工的优质低碳低硅钢盘条的能力。
关键词 SWRM6 低碳低硅钢 工艺实践 冷变形能力
下载PDF
Effects of melt overheating degree on undercooling degree and amorphous forming of Nd_9Fe_(85-x)Ti_4C_2B_x(x=10, 12) magnetic alloys
2
作者 杨梦琳 潘晶 +2 位作者 刘新才 肖晓燕 詹玉勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2633-2640,共8页
The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with ... The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with solidification structure analysis. The results indicate that the undercooling degree of Nd9Fe85-xTi4C2Bx(x=10, 12) alloys significantly increaseswith the rise of melt overheating degree, and two overheating degree thresholds corresponding to the drastic increase of the mean undercooling degree are found for each of the alloys. The existence of two turning points of the mean undercooling degreescan be linked to the structure transitions inside the overheated melts, which result in the evident increase of volume fraction of amorphous phasein the solidified structures. 展开更多
关键词 magnetic alloy melt overheating undercoolingdegree structure transition glass formability
下载PDF
Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al-Sc-Zr alloys 被引量:8
3
作者 Ren-guo GUAN Hong-mei JIN +5 位作者 Wensen JIANG Xiang WANG Yu-xiang WANG Zheng LI Jian ZHANG Huinan LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期907-918,共12页
In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrus... In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires. 展开更多
关键词 Al.Sc.Zr alloy thermal treatment cold deformation mechanical properties CONDUCTIVITY
下载PDF
Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-2Zr-0.3O alloy for biomedical applications 被引量:3
4
作者 Chun-bo LAN Guo LI +2 位作者 Yu WU Li-li GUO Feng CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1537-1542,共6页
The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on mic... The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy. 展开更多
关键词 Ti-35Nb-2Zr-0.3O alloy cold deformation MICROSTRUCTURE mechanical properties biomedical material
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部