Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes...Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.展开更多
In this study the performance of an ASHPWH (air source heat pump water heater) is assessed from exergy point of view in component wise. In order to investigate the work potential of energy, the destruction on the ex...In this study the performance of an ASHPWH (air source heat pump water heater) is assessed from exergy point of view in component wise. In order to investigate the work potential of energy, the destruction on the exergy is analyzed and results are summarized for the components individually. The exergy destruction of the system is studied by considering real paths of the pressure and temperature data which are collected during the experiments of the ASHPWH under varying environmental conditions. In the following step, the evolution of the exergy destruction of the system is calculated by a code which is compiled on MATLAB along these temperature and pressure paths. The obtained results reveal the importance of the transient exergy analysis by providing detailed information about exergy destruction of the system such as where it drives up and reaches up to its max and where it drops down and evolves on a smooth path.展开更多
Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. ...Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ℃ after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection,展开更多
The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order t...The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order to predict the behaviors of the adsorption chiller system and find the influence of working conditions on its operation. For the working process of the main components of the system, including adsorber, condenser and evaporator, the coupled unsteady equations were set up for each stage. The model was then solved using stable numerical methods from EES (equation engineering solver), and the performance of the adsorber and condenser/evaporator of the system was analyzed. The condensation, evaporation and adsorber temperature values as well as the adsorption ratio and desorption ratio were obtained as function of operating time. Also, the coefficient of performance was analyzed in function of the heat source temperature and the cooling source temperature.展开更多
The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016...The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016, investigating seasonal variations in dissolved oxygen and carbonate system parameters of this marginal sea. Results showed that the Yellow Sea cold water mass accumulated respiration-induced CO_2 in subsurface and bottom waters in summer and autumn, leading to acidified seawaters with critical carbonate saturation states of aragonite(Ω_(arag)) of less than 1.5. These seriously acidified seawaters occupied one third of surveyed areas in summer and autumn, likely affecting local calcified organisms and benthic communities. In a future scenario for the 2050 s, in which the atmospheric CO_2 mole fraction increases by 100 μmol mol-1, half of the Yellow Sea benthos would be seasonally covered by acidified seawater having a critical Ω_(arag) of less than 1.5. The corresponding bottom-water p H_T would be around 7.85 in summer, and 7.80 in autumn. Of the China seas, the Yellow Sea cold water mass represents one of the ecosystems most vulnerable to ocean acidification.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41371009)the Fundamental Research Fund for the Central Universities of China (Grant No. lzujbky2013-127)
文摘Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.
文摘In this study the performance of an ASHPWH (air source heat pump water heater) is assessed from exergy point of view in component wise. In order to investigate the work potential of energy, the destruction on the exergy is analyzed and results are summarized for the components individually. The exergy destruction of the system is studied by considering real paths of the pressure and temperature data which are collected during the experiments of the ASHPWH under varying environmental conditions. In the following step, the evolution of the exergy destruction of the system is calculated by a code which is compiled on MATLAB along these temperature and pressure paths. The obtained results reveal the importance of the transient exergy analysis by providing detailed information about exergy destruction of the system such as where it drives up and reaches up to its max and where it drops down and evolves on a smooth path.
基金supported by the Key Project of National Natural Science Foundation‘‘Deep Heat Governance and Utilization’’(No.51134005)the Doctoral Fund of Ministry of Education(No.20120023120004)
文摘Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ℃ after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection,
文摘The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order to predict the behaviors of the adsorption chiller system and find the influence of working conditions on its operation. For the working process of the main components of the system, including adsorber, condenser and evaporator, the coupled unsteady equations were set up for each stage. The model was then solved using stable numerical methods from EES (equation engineering solver), and the performance of the adsorber and condenser/evaporator of the system was analyzed. The condensation, evaporation and adsorber temperature values as well as the adsorption ratio and desorption ratio were obtained as function of operating time. Also, the coefficient of performance was analyzed in function of the heat source temperature and the cooling source temperature.
基金supported by the State Key R&D Project of China(Grant No.2016YFA0601103)the National Natural Science Foundation of China(Grant Nos.91751207&41276061)+2 种基金the Visiting Fellowship in the State Key Laboratory of Marine Environmental Science(Xiamen University)the Fundamental Research Funds of Shandong UniversitySampling surveys were supported by the National Natural Science Foundation of China Open Ship-Time Projects in2012 and 2015
文摘The Yellow Sea on the western continental margin of the North Pacific Ocean is of major ecological and economic importance. Four field surveys were conducted during May and November 2012, August 2015, and January 2016, investigating seasonal variations in dissolved oxygen and carbonate system parameters of this marginal sea. Results showed that the Yellow Sea cold water mass accumulated respiration-induced CO_2 in subsurface and bottom waters in summer and autumn, leading to acidified seawaters with critical carbonate saturation states of aragonite(Ω_(arag)) of less than 1.5. These seriously acidified seawaters occupied one third of surveyed areas in summer and autumn, likely affecting local calcified organisms and benthic communities. In a future scenario for the 2050 s, in which the atmospheric CO_2 mole fraction increases by 100 μmol mol-1, half of the Yellow Sea benthos would be seasonally covered by acidified seawater having a critical Ω_(arag) of less than 1.5. The corresponding bottom-water p H_T would be around 7.85 in summer, and 7.80 in autumn. Of the China seas, the Yellow Sea cold water mass represents one of the ecosystems most vulnerable to ocean acidification.