Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfe...Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.展开更多
A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model...A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.展开更多
With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modem advanced cooling technologies. In this work, t...With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modem advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm2. A mathematical model was ad- vanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples (MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MI-ISIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/AP of MHSIJD are higher than those of MHSIJ.展开更多
Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical ...Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical spacecraft such as sun-synchronous orbits whose inclination is less than 90° are also possible for solar sail.To achieve a sun-synchronous frozen orbit,the characteristic acceleration of the sail is chosen properly.In addition,the attitude of the sail is adjusted to keep the sun-synchronous and frozen characteristics.The perturbations including atmosphere drag,third-body gravitational forces and shaded regions are discussed,where the atmosphere drag is cancelled by solar radiation pressure force,third-body gravitational forces have negligible effects on the orbit and the shaded region can be avoided by choosing the classical orbit elements of the sail.At last,a numerical example is employed to validate the sun-synchronous frozen characteristics of the sail.展开更多
The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid...The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.展开更多
This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer an...This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer and aerodynamic measurements in the channel,which is an accurate representation of the configuration used in aeroengines.Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models.It is important to note that real engine passages do not have perfect rectangular cross sections,but include coiner fillet,ribs with fillet radii and special orientation.Therefore,this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.展开更多
基金Project(50976022) supported by the National Natural Science Foundation of ChinaProject(BY2011155) supported by the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province,China
文摘Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.
文摘A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.
基金financially supported by the National Natural Science Foundation of China(Grant No.51778511)the Hubei Provincial Natural Science Foundation of China(Grant No.2018CFA029)the Key Project of ESI Discipline Development of Wuhan University of Technology(WUT Grant No.2017001)
文摘With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modem advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm2. A mathematical model was ad- vanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples (MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MI-ISIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/AP of MHSIJD are higher than those of MHSIJ.
基金supported by the National Natural Science Foundation of China (Grants Nos.10902056 and 10832004)State Key Lab of Astronautical Dynamics of China (Grant No. 2011ADL-DW0201)
文摘Solar sail is used to achieve a geocentric sun-synchronous frozen orbit.This kind of orbit combines the characteristics of both sun-synchronous orbits and frozen orbits.Furthermore,the impossible orbits for a typical spacecraft such as sun-synchronous orbits whose inclination is less than 90° are also possible for solar sail.To achieve a sun-synchronous frozen orbit,the characteristic acceleration of the sail is chosen properly.In addition,the attitude of the sail is adjusted to keep the sun-synchronous and frozen characteristics.The perturbations including atmosphere drag,third-body gravitational forces and shaded regions are discussed,where the atmosphere drag is cancelled by solar radiation pressure force,third-body gravitational forces have negligible effects on the orbit and the shaded region can be avoided by choosing the classical orbit elements of the sail.At last,a numerical example is employed to validate the sun-synchronous frozen characteristics of the sail.
基金supported by National Natural Science Foundation of China (No. 51176008)
文摘The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.
基金funding from the European Union Seventh Framework Programme(FP7/2007-2013) under Grant Agreement No. 233799(ERICKA)
文摘This paper presents the study of the flow structure and heat transfer,and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade.The investigations focus on heat transfer and aerodynamic measurements in the channel,which is an accurate representation of the configuration used in aeroengines.Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models.It is important to note that real engine passages do not have perfect rectangular cross sections,but include coiner fillet,ribs with fillet radii and special orientation.Therefore,this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.