In order to overcome the inconvenience of manual bubble counting, a bubble counter based on photoelectric technique aiming for automatically detecting and measuring minute gas leakage of cryogenic valves is proposed. ...In order to overcome the inconvenience of manual bubble counting, a bubble counter based on photoelectric technique aiming for automatically detecting and measuring minute gas leakage of cryogenic valves is proposed. Experiments have been conducted on a self-built apparatus, testing the performance with different gas inlet strategies (bottom gas-inlet strategy and side gas-inlet strategy) and the influence of gas pipe length (0, 1, 2, 4, 6, 8, 10 m) and leakage rate (around 10, 20, 30, 40 bubbles/min) on first bubble time and bubble rate. A buffer of 110 cm3 is inserted between leakage source and gas pipe to simulate the down- stream cavum adjacent to the valve clack. Based on analyzing the experimental data, experiential parameters have also been summarized to guide leakage detection and measurement for engineering applications. A practical system has already been suc- cessfully applied in a cryogenic testing apparatus for cryogenic valves.展开更多
xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition ...xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities ofxNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/lONiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe204 and Ba2Fe2O5 has an active effect on electric conductivities ofxNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.展开更多
The wet canopy evaporation rate (Er) wascalculated by Penman-Monteith combination model based on three assumptions and with meteorological variables 2 m above the canopy inthree stands, dominated by spruce (SF), fir (...The wet canopy evaporation rate (Er) wascalculated by Penman-Monteith combination model based on three assumptions and with meteorological variables 2 m above the canopy inthree stands, dominated by spruce (SF), fir (FF) and birch (BF) trees, respectively[(,)( )]in the subalpineforests in western Sichuan, China over a growingseason. The total amount of the E was 44.5 mm forSF, 88.5 mm for FF and 57.8 mm for BF, accounting for 9.2%, 16.6% and 10.2% of the gross rainfall,respectively, in the measuring period. There was the highest average monthly Er and percentage of E togross rainfall for FF compared with SF and BF.Mean Er was 0.097 mm h-1 (ranging from 0.028 to0.487 mm h-1), 0.242 mm h-1 (from 0.068 to 0.711 mm h-1) and 0.149 mm h-1 (from 0.060 to 0.576 mm h-1for SF, FF and BF, respectively. The highest average monthly Er occurred in June was 0.120 mm h-1 forSF, 0.317 mm h-1 for FF and 0.169 mm h-1 for BF, and the lowest value in October was 0.083 mm h-1 for SF, 0.187 mm h-1 for FF and 0.101 mm h-1 for BF,respectively. The averages of Er from 8:00 to 16:00were significantly higher than those from 0:00 to8:00 and from 16:00 to 0:00 for the three stands. The marked daily and monthly differences of Er were contributable to the variations of solar radiation, air temperature and relative humidity above thecanopy.展开更多
Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected ...Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected construction, blowing-in rate that play an important role in the temperature field and airflow field of the displacement ventilation system. Exterior-protected construction has little influence on indoor temperature distribution of displacement ventilation systems and the influence is limited only in a small area near the external wall when the indoor heat source is the main cooling load.The height of a room has little influence on indoor temperature field, and the temperature gradient of active region is basically unchanged. In the system combined with a displacement ventilation system and a cooling system, the height also has little influence. When the cooling load is high,the indoor heat source creates a strong convective plume, which will make the average indoor air age lower, the ventilation efficiency higher and the elimination of pollutant easier. Air supply rate plays an important role in displacement ventilation systems. The increase of air supply rate that can be realized by increasing the air supply velocity and enlarging the area of air inlet will increase the mass capability of the system and diminish the vertical temperature gradient. From the comparison between simulations and experiments, it is concluded that this simulation are creditable.展开更多
During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the in...During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the inner diameter of 2.32, 5.16, 8.05, 10.0 and 16.0 mm, respectively, with the ranges of pressure of 0.1-1.92 MPa, velocity of 1.47-23.3 m/s, local subcooling of 3.7-108.7 ℃ and heat flux of up to 38.3 MW/m2. Another group of the data were obtained in the inner diameter of 4.62, 7.98 and 10.89 mm, respectively, with the ranges of pressure of 1.7-20.6 MPa, mass flux of 454-4,055 kg/(m2.s) and inlet subcooling of 53-361 ℃. The results showed complicated effects of the pressure, mass flux, subcooling and diameter on the critical heat flux. They were formulated by two empirical correlations. A mechanistic model on the limit of heat transfer capability from the bubbly layer to the subcooled core was also proposed for all the results.展开更多
This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP...This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP units by using the probe insertion method. There is a tendency to decrease energy efficiency compared to a high loading factor. GHP operation was almost all part load operation. This on-site evaluation indicates a clear difference between conventional and improved GHP.展开更多
A new evaporative cooling system based on the action of centrifugal forces is proposed.Such systems are suitable for cooling large air volumes in tropical climates.Effects of geometrical and operational parameters on ...A new evaporative cooling system based on the action of centrifugal forces is proposed.Such systems are suitable for cooling large air volumes in tropical climates.Effects of geometrical and operational parameters on system performance are optimized using Taguchi method.It is observed that disc speed,air flow rate and water flow rate are found to have major influence on system performance and other parameter,viz.,disc diameter,pin geometry,evaporation chamber length and orientation of pin have less influence.展开更多
We review recent developments in the use of magnetic lattices as a complementary tool to optical lattices for trapping periodic arrays of ultracold atoms and degenerate quantum gases. Recent advances include the reali...We review recent developments in the use of magnetic lattices as a complementary tool to optical lattices for trapping periodic arrays of ultracold atoms and degenerate quantum gases. Recent advances include the realisation of Bose–Einstein condensation in multiple sites of a magnetic lattice of one-dimensional microtraps, the trapping of ultracold atoms in square and triangular magnetic lattices,and the fabrication of magnetic lattice structures with submicron period suitable for quantum tunnelling experiments.Finally, we describe a proposal to utilise long-range interacting Rydberg atoms in a large spacing magnetic lattice to create interactions between atoms on neighbouring sites.展开更多
Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorat...Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorated thermo-flow performances of a condenser cell. It is of benefit to the design and operation optimization of the direct dry cooling system in a power plant to investigate the thermo-flow characteristics of the condenser cell and propose the flow leading measures of cooling air. On the basis of the representative configuration of the air-cooled condenser cell in a 600 MW direct dry cooling power plant, the computa- tional models of the air side fluid and heat flows are built, in which the actual fan blade geometric details are considered. Various flow field leading ways of cooling air are presented and the thermo-flow characteristics in the A-frame condenser cell and through the finned tube bundles are compared. Results show that the flow field leading measures can result in the increased volumetric flow rate and heat rejection, thus bringing on the improved performance of the condenser cell. The improvement of thermo-flow oerformances depends upon the geometric details of the flow guiding device.展开更多
As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cool- ing technology has been widely used. Film cooling hole structure exists mainly in areas that have high t...As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cool- ing technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stopped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.展开更多
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between th...A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.展开更多
The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hol...The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hole outlet using the injection of the branch hole. The trunk-branch holes require easily machinable round hole as compared to the shaped holes. The flow cases were considered at the blowing ratios of 0.5, 0.75, 1.0, 1.5 and 2.0. At the low blowing ratio of 0.5, the vortices-pair at the outlet of the trunk hole is reduced and the laterally coverage of the film is improved. At the high blowing ratio of 2.0, the vortices-pair is killed by the vortex which is produced by the injection of the branch hole. The flow rate of the two outlets becomes more significantly different when the blowing ratio increases from 0.75 to 2.0. The discharge coefficients increase 0.15 and the laterally averaged film effectiveness improve 0.2 as compared to the cylindrical holes. The optimal blowing ratios occur at M=1.0 or M= 1.5 according to the various locations downstream of the holes.展开更多
This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracin...This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.展开更多
To reduce the fuel consumption of internal combustion engines, more attention has been paid to the tribological performance of the piston ring pack during the cold start and idle operations. In this research, a numeri...To reduce the fuel consumption of internal combustion engines, more attention has been paid to the tribological performance of the piston ring pack during the cold start and idle operations. In this research, a numerical model considering the cylinder liner deformation and the piston ring conformability is developed to predict the blow-by, lubrication, friction and wear of the piston ring pack under different operating conditions. The gas flow rate, inter-ring gas pressures, minimum oil film thickness, frictional force and wear load during cold start are calculated and compared with those during warm idle operating conditions. The results show that cylinder liner deformation and piston ring conformability together obviously affect blow-by and other tribological performance. Meanwhile, it is found that friction loss is larger during cold start than during warm idle operating conditions. However, the wear process is more severe during warm idle operation than during cold start. From this research, the blow-by and tribological performance of the piston ring pack during cold start and warm idle operations are understood more deeply.展开更多
基金Project (Nos. 50776075 and 50536040) supported by the National Natural Science Foundation of China
文摘In order to overcome the inconvenience of manual bubble counting, a bubble counter based on photoelectric technique aiming for automatically detecting and measuring minute gas leakage of cryogenic valves is proposed. Experiments have been conducted on a self-built apparatus, testing the performance with different gas inlet strategies (bottom gas-inlet strategy and side gas-inlet strategy) and the influence of gas pipe length (0, 1, 2, 4, 6, 8, 10 m) and leakage rate (around 10, 20, 30, 40 bubbles/min) on first bubble time and bubble rate. A buffer of 110 cm3 is inserted between leakage source and gas pipe to simulate the down- stream cavum adjacent to the valve clack. Based on analyzing the experimental data, experiential parameters have also been summarized to guide leakage detection and measurement for engineering applications. A practical system has already been suc- cessfully applied in a cryogenic testing apparatus for cryogenic valves.
基金Project(2005CB623703) supported by the National Basic Research Program of ChinaProject(50721003) supported by the National Natural Science Fund for Innovation Group of ChinaProject(2008AA030501) supported by the National High-Tech Research and Development Program of China
文摘xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities ofxNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/lONiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe204 and Ba2Fe2O5 has an active effect on electric conductivities ofxNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.
基金This work was supported by the China-Finland Cooperation Project“Responses of the Ecosystem Processes of High-Frigid Coniferous Forest to Climate”(No.3021130504)the Key Project of Ecology and Environment in West China,the National Natural Science Foundation of China(NSFC)(No.90202010)“100 Distinguished Experts”Programme of the Chinese Academy of Sciences.Thanks are also given to the staff of the Wanglang Nature Reserve for their kind help.
文摘The wet canopy evaporation rate (Er) wascalculated by Penman-Monteith combination model based on three assumptions and with meteorological variables 2 m above the canopy inthree stands, dominated by spruce (SF), fir (FF) and birch (BF) trees, respectively[(,)( )]in the subalpineforests in western Sichuan, China over a growingseason. The total amount of the E was 44.5 mm forSF, 88.5 mm for FF and 57.8 mm for BF, accounting for 9.2%, 16.6% and 10.2% of the gross rainfall,respectively, in the measuring period. There was the highest average monthly Er and percentage of E togross rainfall for FF compared with SF and BF.Mean Er was 0.097 mm h-1 (ranging from 0.028 to0.487 mm h-1), 0.242 mm h-1 (from 0.068 to 0.711 mm h-1) and 0.149 mm h-1 (from 0.060 to 0.576 mm h-1for SF, FF and BF, respectively. The highest average monthly Er occurred in June was 0.120 mm h-1 forSF, 0.317 mm h-1 for FF and 0.169 mm h-1 for BF, and the lowest value in October was 0.083 mm h-1 for SF, 0.187 mm h-1 for FF and 0.101 mm h-1 for BF,respectively. The averages of Er from 8:00 to 16:00were significantly higher than those from 0:00 to8:00 and from 16:00 to 0:00 for the three stands. The marked daily and monthly differences of Er were contributable to the variations of solar radiation, air temperature and relative humidity above thecanopy.
文摘Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected construction, blowing-in rate that play an important role in the temperature field and airflow field of the displacement ventilation system. Exterior-protected construction has little influence on indoor temperature distribution of displacement ventilation systems and the influence is limited only in a small area near the external wall when the indoor heat source is the main cooling load.The height of a room has little influence on indoor temperature field, and the temperature gradient of active region is basically unchanged. In the system combined with a displacement ventilation system and a cooling system, the height also has little influence. When the cooling load is high,the indoor heat source creates a strong convective plume, which will make the average indoor air age lower, the ventilation efficiency higher and the elimination of pollutant easier. Air supply rate plays an important role in displacement ventilation systems. The increase of air supply rate that can be realized by increasing the air supply velocity and enlarging the area of air inlet will increase the mass capability of the system and diminish the vertical temperature gradient. From the comparison between simulations and experiments, it is concluded that this simulation are creditable.
文摘During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the inner diameter of 2.32, 5.16, 8.05, 10.0 and 16.0 mm, respectively, with the ranges of pressure of 0.1-1.92 MPa, velocity of 1.47-23.3 m/s, local subcooling of 3.7-108.7 ℃ and heat flux of up to 38.3 MW/m2. Another group of the data were obtained in the inner diameter of 4.62, 7.98 and 10.89 mm, respectively, with the ranges of pressure of 1.7-20.6 MPa, mass flux of 454-4,055 kg/(m2.s) and inlet subcooling of 53-361 ℃. The results showed complicated effects of the pressure, mass flux, subcooling and diameter on the critical heat flux. They were formulated by two empirical correlations. A mechanistic model on the limit of heat transfer capability from the bubbly layer to the subcooled core was also proposed for all the results.
文摘This paper reports the on-site performance evaluation of conventional and improved gas engine-driven VRF (variable refrigerant flow) units and (abbreviated as GHP) units. The study aims to elucidate two actual GHP units by using the probe insertion method. There is a tendency to decrease energy efficiency compared to a high loading factor. GHP operation was almost all part load operation. This on-site evaluation indicates a clear difference between conventional and improved GHP.
文摘A new evaporative cooling system based on the action of centrifugal forces is proposed.Such systems are suitable for cooling large air volumes in tropical climates.Effects of geometrical and operational parameters on system performance are optimized using Taguchi method.It is observed that disc speed,air flow rate and water flow rate are found to have major influence on system performance and other parameter,viz.,disc diameter,pin geometry,evaporation chamber length and orientation of pin have less influence.
基金supported by an Australian Research Council Discovery Project Grant(DP130101160)
文摘We review recent developments in the use of magnetic lattices as a complementary tool to optical lattices for trapping periodic arrays of ultracold atoms and degenerate quantum gases. Recent advances include the realisation of Bose–Einstein condensation in multiple sites of a magnetic lattice of one-dimensional microtraps, the trapping of ultracold atoms in square and triangular magnetic lattices,and the fabrication of magnetic lattice structures with submicron period suitable for quantum tunnelling experiments.Finally, we describe a proposal to utilise long-range interacting Rydberg atoms in a large spacing magnetic lattice to create interactions between atoms on neighbouring sites.
基金supported by the National Basic Research Program of China (973 Program)(Grant No.2009CB219804)the National Scientific and Technical Supporting Program of China(Grant No.2011BAA04B02)
文摘Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorated thermo-flow performances of a condenser cell. It is of benefit to the design and operation optimization of the direct dry cooling system in a power plant to investigate the thermo-flow characteristics of the condenser cell and propose the flow leading measures of cooling air. On the basis of the representative configuration of the air-cooled condenser cell in a 600 MW direct dry cooling power plant, the computa- tional models of the air side fluid and heat flows are built, in which the actual fan blade geometric details are considered. Various flow field leading ways of cooling air are presented and the thermo-flow characteristics in the A-frame condenser cell and through the finned tube bundles are compared. Results show that the flow field leading measures can result in the increased volumetric flow rate and heat rejection, thus bringing on the improved performance of the condenser cell. The improvement of thermo-flow oerformances depends upon the geometric details of the flow guiding device.
基金supported by funds form National natural science foundation of China(Grant No.50976008)
文摘As one of the most important developments in air cooling technology for hot parts of the aero-engine, film cool- ing technology has been widely used. Film cooling hole structure exists mainly in areas that have high temperature, uneven cooling effectiveness issues when in actual use. The first stage turbine vanes of the aero-engine consume the largest portion of cooling air, thereby the research on reducing the amount of cooling air has the greatest potential. A new stopped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially. Through numerical methods, the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched. This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions, then the most reasonable and scientific structure parameter can be obtained by analyzing the results. The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio. Under this condition, the vane achieved the best cooling result and the highest cooling effectiveness, and also retained a low pressure loss.
文摘A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow.The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances,and for dilute mist conditions.Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio,and reach a limit for a critical loading.For these dilute spray conditions,complete evaporation of the droplets takes place.Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate.The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
文摘The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hole outlet using the injection of the branch hole. The trunk-branch holes require easily machinable round hole as compared to the shaped holes. The flow cases were considered at the blowing ratios of 0.5, 0.75, 1.0, 1.5 and 2.0. At the low blowing ratio of 0.5, the vortices-pair at the outlet of the trunk hole is reduced and the laterally coverage of the film is improved. At the high blowing ratio of 2.0, the vortices-pair is killed by the vortex which is produced by the injection of the branch hole. The flow rate of the two outlets becomes more significantly different when the blowing ratio increases from 0.75 to 2.0. The discharge coefficients increase 0.15 and the laterally averaged film effectiveness improve 0.2 as compared to the cylindrical holes. The optimal blowing ratios occur at M=1.0 or M= 1.5 according to the various locations downstream of the holes.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525 and 51136003supported by the 111 Project,No.B07009
文摘This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.
基金supported by the National Natural Science Foundation of China(Grant No.51375300)the Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSVZD201401)
文摘To reduce the fuel consumption of internal combustion engines, more attention has been paid to the tribological performance of the piston ring pack during the cold start and idle operations. In this research, a numerical model considering the cylinder liner deformation and the piston ring conformability is developed to predict the blow-by, lubrication, friction and wear of the piston ring pack under different operating conditions. The gas flow rate, inter-ring gas pressures, minimum oil film thickness, frictional force and wear load during cold start are calculated and compared with those during warm idle operating conditions. The results show that cylinder liner deformation and piston ring conformability together obviously affect blow-by and other tribological performance. Meanwhile, it is found that friction loss is larger during cold start than during warm idle operating conditions. However, the wear process is more severe during warm idle operation than during cold start. From this research, the blow-by and tribological performance of the piston ring pack during cold start and warm idle operations are understood more deeply.