A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation ...The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.展开更多
Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical hea...Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively.展开更多
The aim of this paper is to collect information about dairy cow's behaviour connected to different environmental conditions. During summer 2009 and winter 2010 experimental trials were arranged to verify the behaviou...The aim of this paper is to collect information about dairy cow's behaviour connected to different environmental conditions. During summer 2009 and winter 2010 experimental trials were arranged to verify the behaviour of dairy cows in a farm located in Po Plain (Italy). The barn was provided with an air-water cooling system, based on the use of fans and sprinklers placed only in the feeding alley. Two different trials were carried out. The first experiment was targeted on verifying the use of the cubicles by the cows in relation to the availability of the cooling system only in feeding area. The second trial aimed at testing the effectiveness of zone cooling systems placed in the front of cubicles. For this purpose three cubicles in the barn were provided with cooling systems, based on the input of high velocity conditioned air streams. The results clearly remark that the behaviour of the animals is greatly influenced by the environmental conditions. With high temperatures the use of the cubicles is deeply reduced and the animals prefer to stay in feeding area, thus benefiting from the cooling effect of water sprinkled by the showers and of the air streams created by the fans. With air temperatures increasing from 21℃ to 33 ℃ the cows reduce the staying in the cubicles, which gets down from 540 to 32% (r2 = 0.2608). As regards the efficacy of zone cooling system in the cubicles, the results are not particularly encouraging. The cows continue to use the cubicles without changing the behaviour in relation to the presence of conditioned air flow.展开更多
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theor...A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.展开更多
Seoul metropolitan subway network is known to be the one of the most heavily used transportation means in the world. The subway cabins are naturally ventilated when the cabin doors are opened and through the gaps caus...Seoul metropolitan subway network is known to be the one of the most heavily used transportation means in the world. The subway cabins are naturally ventilated when the cabin doors are opened and through the gaps caused by the incomplete air-tightening of cabin bodies. Although, subway trains are equipped with a mechanical exhaust fan, the apparatus is rarely operated due to the problem of heating/cooling efficiency especially in the summer and winter seasons. In this study, we analyzed the transient CO2 (carbon dioxide) concentration level during the journey of a subway cabin when a heavy load of passengers of up to 200% of designed capacity using a CFD (computational fluid dynamics) analysis. With an increased journey time, the CO2 concentration increased by up to 5,000 ppm depending on passenger load. Through the operation of a mechanical exhaust fan, the high concentration of CO2 decreased down to 1,500 ppm. The effect of the exhaust fan operating on the dilution of indoor air was estimated by comparison with a closed cabin. In addition, the energy consumption for cooling in summer time was assessed for exhaust fan operations.展开更多
Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resis...Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resistance probe on the tip of micrometer touches the surface and bottom of the film, two corresponding sudden reductions of resistance occurs, and the difference of two graduations on the micrometer displays the thickness of the film. The film thickness of eleven angles was measured in five kinds of water flows and results varies from 0.8933mm to 1.7233 mm. Mean thickness and mean heat transfer coefficient of the film out of the tube was calculated.展开更多
This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array...This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array (MHPA-FPC), an indoor experiment for thermal transfer characteristic of MHPA applied to FPC was conducted by using an electrical heating film to simulate the solar radiation. Different cooling water flow rates, cooling water temperatures, slopes, and contact thermal resistances be- tween the condenser of MHPA and the heat exchanger were tested at different heating powers. The experimental results in- dicate that MHPA-FPC exhibits the enhanced heat transfer capability with increased cooling water flow rate and temperature. Total thermal resistance has a maximum decline of approximately 10% when the flow rate increases from 180 to 360 L h-1 and 38% when the cooling water temperature increases from 20~C to 40~C. When the inclination angle of MHPA-FPC ex- ceeds 30~, the slope change has a negligible effect on the heat transfer performance of MHPA-FPC. In addition, contact thermal resistance significantly affects the heat transfer capability of MHPA-FPC. The total thermal resistances lowers to nearly half of the original level when contact material between the condenser of MHPA and the heat exchanger changes from conductive silicone to conductive grease. These results could provide useful information for the optimal design and operation of MHPA-FPC.展开更多
Cooling water is an important part in a Spallation Neutron Source target cooling system, but the unstable vortexes at the exits of the slits between every two tungsten target slices have a negative impact on the stabl...Cooling water is an important part in a Spallation Neutron Source target cooling system, but the unstable vortexes at the exits of the slits between every two tungsten target slices have a negative impact on the stable running of the target system. We apply the field synergy principle for fluid flow to obtain the optimal flow field, which has a uniform velocity distribution without eddy, and then, optimize the geometrical structure of the cooling water flow channel based on the optimal flow field. The results show that when the cooling water flows in the optimized channel, the eddy sizes decrease, the time fluctuations of velocity and pressure almost vanish, and the volume flow rates of the cooling water in each parallel slit are uniform. Therefore, it effectively improves the running stability of the target system with the premise of satisfying the target heat load.展开更多
The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hol...The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hole outlet using the injection of the branch hole. The trunk-branch holes require easily machinable round hole as compared to the shaped holes. The flow cases were considered at the blowing ratios of 0.5, 0.75, 1.0, 1.5 and 2.0. At the low blowing ratio of 0.5, the vortices-pair at the outlet of the trunk hole is reduced and the laterally coverage of the film is improved. At the high blowing ratio of 2.0, the vortices-pair is killed by the vortex which is produced by the injection of the branch hole. The flow rate of the two outlets becomes more significantly different when the blowing ratio increases from 0.75 to 2.0. The discharge coefficients increase 0.15 and the laterally averaged film effectiveness improve 0.2 as compared to the cylindrical holes. The optimal blowing ratios occur at M=1.0 or M= 1.5 according to the various locations downstream of the holes.展开更多
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
基金Project(G-0805-10156) supported by US Energy Foundation
文摘The optimum control strategy and the saving potential of all variable chiller plant under the conditions of changing building cooling load and cooling water supply temperature were investigated. Based on a simulation model of water source chiller plant established in dynamic transient simulation program (TRNSYS),the four-variable quadratic orthogonal regression experiments were carried out by taking cooling load,cooling water supply temperature,cooling water flow rate and chilled water flow rate as variables,and the fitting formulas expressing the relationships between the total energy consumption of chiller plant with the four selected parameters was obtained. With the SAS statistical software and MATHEMATICA mathematical software,the optimal chilled water flow rate and cooling water flow rate which result in the minimum total energy consumption were determined under continuously varying cooling load and cooling water supply temperature. With regard to a chiller plant serving an office building in Shanghai,the total energy consumptions under different control strategies were computed in terms of the forecasting function of cooling load and water source temperature. The results show that applying the optimal control strategy to the chiller plant can bring a saving of 23.27% in power compared with the corresponding conventional variable speed plant,indicating that the optimal control strategy can improve the energy efficiency of chiller plant.
文摘Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively.
文摘The aim of this paper is to collect information about dairy cow's behaviour connected to different environmental conditions. During summer 2009 and winter 2010 experimental trials were arranged to verify the behaviour of dairy cows in a farm located in Po Plain (Italy). The barn was provided with an air-water cooling system, based on the use of fans and sprinklers placed only in the feeding alley. Two different trials were carried out. The first experiment was targeted on verifying the use of the cubicles by the cows in relation to the availability of the cooling system only in feeding area. The second trial aimed at testing the effectiveness of zone cooling systems placed in the front of cubicles. For this purpose three cubicles in the barn were provided with cooling systems, based on the input of high velocity conditioned air streams. The results clearly remark that the behaviour of the animals is greatly influenced by the environmental conditions. With high temperatures the use of the cubicles is deeply reduced and the animals prefer to stay in feeding area, thus benefiting from the cooling effect of water sprinkled by the showers and of the air streams created by the fans. With air temperatures increasing from 21℃ to 33 ℃ the cows reduce the staying in the cubicles, which gets down from 540 to 32% (r2 = 0.2608). As regards the efficacy of zone cooling system in the cubicles, the results are not particularly encouraging. The cows continue to use the cubicles without changing the behaviour in relation to the presence of conditioned air flow.
基金Supported by the Technology Development Program of Jinan City (201102039,201202087)the Technology Development Program of Shandong Province (2011GNC11401)
文摘A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.
文摘Seoul metropolitan subway network is known to be the one of the most heavily used transportation means in the world. The subway cabins are naturally ventilated when the cabin doors are opened and through the gaps caused by the incomplete air-tightening of cabin bodies. Although, subway trains are equipped with a mechanical exhaust fan, the apparatus is rarely operated due to the problem of heating/cooling efficiency especially in the summer and winter seasons. In this study, we analyzed the transient CO2 (carbon dioxide) concentration level during the journey of a subway cabin when a heavy load of passengers of up to 200% of designed capacity using a CFD (computational fluid dynamics) analysis. With an increased journey time, the CO2 concentration increased by up to 5,000 ppm depending on passenger load. Through the operation of a mechanical exhaust fan, the high concentration of CO2 decreased down to 1,500 ppm. The effect of the exhaust fan operating on the dilution of indoor air was estimated by comparison with a closed cabin. In addition, the energy consumption for cooling in summer time was assessed for exhaust fan operations.
基金Acknowledgments: The study is one of branches of a key project of Chinese National Programs for Foundation Research and Development, thanks for the supporting from the National Nature Science Foundation. The new method to measure thickness of wager film has applied an utility model patent in China (No. 200620098211.4).
文摘Thickness of falling water film out of tubes is one of critical factors of heat transfer of evaporative air cooler. A new method of resistance measurement was developed to measure thickness of the film. When the resistance probe on the tip of micrometer touches the surface and bottom of the film, two corresponding sudden reductions of resistance occurs, and the difference of two graduations on the micrometer displays the thickness of the film. The film thickness of eleven angles was measured in five kinds of water flows and results varies from 0.8933mm to 1.7233 mm. Mean thickness and mean heat transfer coefficient of the film out of the tube was calculated.
基金financially supported by the Natural Science Foundation of Beijing(Grant No.Z1004020201201)the Opening Funds of State Key Laboratory of Building Safety and Build Environment of China(Grant No.BSBE 2011-07)
文摘This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array (MHPA-FPC), an indoor experiment for thermal transfer characteristic of MHPA applied to FPC was conducted by using an electrical heating film to simulate the solar radiation. Different cooling water flow rates, cooling water temperatures, slopes, and contact thermal resistances be- tween the condenser of MHPA and the heat exchanger were tested at different heating powers. The experimental results in- dicate that MHPA-FPC exhibits the enhanced heat transfer capability with increased cooling water flow rate and temperature. Total thermal resistance has a maximum decline of approximately 10% when the flow rate increases from 180 to 360 L h-1 and 38% when the cooling water temperature increases from 20~C to 40~C. When the inclination angle of MHPA-FPC ex- ceeds 30~, the slope change has a negligible effect on the heat transfer performance of MHPA-FPC. In addition, contact thermal resistance significantly affects the heat transfer capability of MHPA-FPC. The total thermal resistances lowers to nearly half of the original level when contact material between the condenser of MHPA and the heat exchanger changes from conductive silicone to conductive grease. These results could provide useful information for the optimal design and operation of MHPA-FPC.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51006060, 51036003)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.201150)
文摘Cooling water is an important part in a Spallation Neutron Source target cooling system, but the unstable vortexes at the exits of the slits between every two tungsten target slices have a negative impact on the stable running of the target system. We apply the field synergy principle for fluid flow to obtain the optimal flow field, which has a uniform velocity distribution without eddy, and then, optimize the geometrical structure of the cooling water flow channel based on the optimal flow field. The results show that when the cooling water flows in the optimized channel, the eddy sizes decrease, the time fluctuations of velocity and pressure almost vanish, and the volume flow rates of the cooling water in each parallel slit are uniform. Therefore, it effectively improves the running stability of the target system with the premise of satisfying the target heat load.
文摘The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hole outlet using the injection of the branch hole. The trunk-branch holes require easily machinable round hole as compared to the shaped holes. The flow cases were considered at the blowing ratios of 0.5, 0.75, 1.0, 1.5 and 2.0. At the low blowing ratio of 0.5, the vortices-pair at the outlet of the trunk hole is reduced and the laterally coverage of the film is improved. At the high blowing ratio of 2.0, the vortices-pair is killed by the vortex which is produced by the injection of the branch hole. The flow rate of the two outlets becomes more significantly different when the blowing ratio increases from 0.75 to 2.0. The discharge coefficients increase 0.15 and the laterally averaged film effectiveness improve 0.2 as compared to the cylindrical holes. The optimal blowing ratios occur at M=1.0 or M= 1.5 according to the various locations downstream of the holes.