Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
For utilization of the residual heat of flue gas to drive the absorption chillers,a lithium-bromide falling film in vertical tube type generator is presented.A mathematical model was developed to simulate the heat and...For utilization of the residual heat of flue gas to drive the absorption chillers,a lithium-bromide falling film in vertical tube type generator is presented.A mathematical model was developed to simulate the heat and mass coupled problem of laminar falling film evaporation in vertical tube.In the model,the factor of mass transfer was taken into account in heat transfer performance calculation.The temperature and concentration fields were calculated.Some tests were conducted for the factors such as Re number,heating flux,the inlet concentration and operating pressure which can affect the heat and mass transfer performance in laminar falling film evaporation.The heat transfer performance is enhanced with the increasing of heat flux.An increasing inlet concentration can weaken the heat transfer performance.The operating pressure hardly affects on heat and mass transfer.The bigger inlet Re number means weaker heat transfer effects and stronger mass transfer.The mass transfer obviously restrains the heat transfer in the falling film solution.The relation between dimensionless heat transfer coefficient and the inlet Re number is obtained.展开更多
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
文摘For utilization of the residual heat of flue gas to drive the absorption chillers,a lithium-bromide falling film in vertical tube type generator is presented.A mathematical model was developed to simulate the heat and mass coupled problem of laminar falling film evaporation in vertical tube.In the model,the factor of mass transfer was taken into account in heat transfer performance calculation.The temperature and concentration fields were calculated.Some tests were conducted for the factors such as Re number,heating flux,the inlet concentration and operating pressure which can affect the heat and mass transfer performance in laminar falling film evaporation.The heat transfer performance is enhanced with the increasing of heat flux.An increasing inlet concentration can weaken the heat transfer performance.The operating pressure hardly affects on heat and mass transfer.The bigger inlet Re number means weaker heat transfer effects and stronger mass transfer.The mass transfer obviously restrains the heat transfer in the falling film solution.The relation between dimensionless heat transfer coefficient and the inlet Re number is obtained.