Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta...Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.展开更多
A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relations...A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.展开更多
The microstructure of an alloy is affected intensively by the cooling process.To figure out the inherent relation between the cooling rate and microstructure of an advanced nickel-based superalloy,experimental and num...The microstructure of an alloy is affected intensively by the cooling process.To figure out the inherent relation between the cooling rate and microstructure of an advanced nickel-based superalloy,experimental and numerical studies on the cooling process were conducted.Specifically,the measurement was performed concerning both the temperature of the specimen during the end-quench test and the size of the secondaryγ′phase of the specimen after that.The heat transfer coefficient of the quenched surface was determined by the inverse heat transfer method for simulation.The results show that the cooling rate of the quenched surface exceeds 1574 K/min.Based on the averaged cooling rate obtained from the simulation and the measured size of the secondaryγ′phase,an empirical correlation in a double logarithmic relationship between them is proposed.The relationship is verified by the experiment with specified cooling rates.展开更多
The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature fiel...The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature field and velocity field in the device were obtained. The performance of the liquid-desiccant evaporator was studied as the concentration of the inlet solution varied between 21% and 30% and the pipe wall temperature between 30 and 50 ℃. Results show that the humidification rate and the humidification efficiency increased with the inlet air temperature, the solution flow rate, the solution temperature, and the pipe wall temperature. The humidification rate and humidification efficiency decreased with increasing moisture content in inlet air and the concentration of inlet solution. The humidification rate increased substantially but the humidification efficiency decreased as the inlet air flow rate increased. The error between the simulations and experimental results is acceptable, meaning that our model can provide a theoretical basis for optimizing the performance of a humidifying evaporator.展开更多
With the western development in China, more problems with rock and soil engineering in cold regions will be encountered. To study the stability of rock mass under the frost and thaw condition is of far significance. W...With the western development in China, more problems with rock and soil engineering in cold regions will be encountered. To study the stability of rock mass under the frost and thaw condition is of far significance. We attempt to simulate and analyze the temperature and moisture field in the surrounding rock of Dabanshan tunnel at its exit KI06+025 in the cold region by software Femlab. First, introduced the common numerical solution to the moisture and heat coupled about the soft rock in tunnels of cold region. Then gave emphasis on simulation of the law of temperature distribution coupled temperature-moisture field and draw a parallel between temperature fields with different coefficient of percolation. In the course of simulation we considered the problem of caloric receptivity, thermal conductivity and critical heat varying with temperature.展开更多
Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa....Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.展开更多
A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The ...A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.展开更多
For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distributi...For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distribution, heating law in goaf and to forecast the effects of fire protection by taking the fifth section face of the No. 18 coal seam in Nanshan Coal Mine as the basis for this study. The results demonstrate that if the vertical position of the drainage laneway is so low as to cause serious air leakage, a high oxygen concentration area exists in the return side of the goaf, and there is also a high temperature region which has faster heating rate than in the other areas. The effect of methane drainage on goal heating can be alleviated dramatically by simultaneous plugging and nitrogen injection. The results show that gas data in the return side of the goaf must be detected carefully in the work face, which is of similar drainage arrangement. Therefore, comprehensive fire protection measures should be carried out if conditions permit.展开更多
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theor...A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.展开更多
The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a ther...The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.展开更多
Refrigerant is a medium used in refrigeration cycle. Until now in thermodynamic models calculations of refrigerant is not considered with lubricant and moist air but as an ideal pure gas (without any contaminants). ...Refrigerant is a medium used in refrigeration cycle. Until now in thermodynamic models calculations of refrigerant is not considered with lubricant and moist air but as an ideal pure gas (without any contaminants). This is also the case in refrigeration cycle where the refrigerant is very often considered as an ideal one. Lubricant, air and water vapour are not considered in thermodynamic calculations in spite of their existence. The problems in the existing research are summarized. A further study is suggested on refrigerant systems. This circulation of such calculations is at the origin of a deviation from a theoretical behaviour. This article aims at reviewing the researches of oil-refrigerant, air-refrigerant, moist air-refrigerant or oil-moist air-refrigerant mixtures and focuses particularly on mixture enthalpy calculation. This paper deals with the description of the real mixture of refrigerant and contaminants (lubricant, water, moist air and other remains of refrigerants at elevated pressures and temperatures) which flow in a refrigerating cycle and the main point of this paper is to appoint thermodynamic parameters of such a mixture using the thermodynamic formulas.展开更多
By taking a 2.3 MW double-fed asynchronous generator as an example,a new method for fast simulation analysis of ventilation cooling system inside generator is proposed based on the one-dimensional simulation software ...By taking a 2.3 MW double-fed asynchronous generator as an example,a new method for fast simulation analysis of ventilation cooling system inside generator is proposed based on the one-dimensional simulation software FLOWMASTER.The thermal-fluid coupling simulation model of ventilation cooling system inside generator is established.Under the stable running state of the generator,the flow velocity distribution and temperature rise of the key parts of the generator are analyzed.The results prove that the ventilation structure design of the generator meets the temperature rise limit.The simulation results are compared with the theoretical calculation results and the experimental results,which verify the correctness of the thermal-fluid coupling simulation method proposed in this paper.展开更多
The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield ...The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.展开更多
The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer r...The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors.展开更多
The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) m...The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.展开更多
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ...The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.展开更多
基金Project (51171104) supported by the National Natural Science Foundation of China
文摘Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.
基金Project(51034009)supported by the National Natural Science Foundation of China
文摘A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.
基金Project(2016YFB0700300) supported by the National Key Research and Development Program of ChinaProject(2019zzts262) supported by the Postgraduate Independent Exploration and Innovation Program of Central South University,China
文摘The microstructure of an alloy is affected intensively by the cooling process.To figure out the inherent relation between the cooling rate and microstructure of an advanced nickel-based superalloy,experimental and numerical studies on the cooling process were conducted.Specifically,the measurement was performed concerning both the temperature of the specimen during the end-quench test and the size of the secondaryγ′phase of the specimen after that.The heat transfer coefficient of the quenched surface was determined by the inverse heat transfer method for simulation.The results show that the cooling rate of the quenched surface exceeds 1574 K/min.Based on the averaged cooling rate obtained from the simulation and the measured size of the secondaryγ′phase,an empirical correlation in a double logarithmic relationship between them is proposed.The relationship is verified by the experiment with specified cooling rates.
基金Project(2016YFC0700100) supported by the National Key R&D Program of ChinaProject(JDJQ20160103) supported by Promotion of the Connotation Development Quota Project of Colleges and Universities-Outstanding Youth of Architectural University,China
文摘The standard k-ε turbulence model and discrete phase model (DPM) were used to simulate the heat and mass transfer in a liquid-desiccant evaporator driven by a heat pump using FLUENT software, and the temperature field and velocity field in the device were obtained. The performance of the liquid-desiccant evaporator was studied as the concentration of the inlet solution varied between 21% and 30% and the pipe wall temperature between 30 and 50 ℃. Results show that the humidification rate and the humidification efficiency increased with the inlet air temperature, the solution flow rate, the solution temperature, and the pipe wall temperature. The humidification rate and humidification efficiency decreased with increasing moisture content in inlet air and the concentration of inlet solution. The humidification rate increased substantially but the humidification efficiency decreased as the inlet air flow rate increased. The error between the simulations and experimental results is acceptable, meaning that our model can provide a theoretical basis for optimizing the performance of a humidifying evaporator.
基金Supported by the National Natural Science Foundation of China (40372119)
文摘With the western development in China, more problems with rock and soil engineering in cold regions will be encountered. To study the stability of rock mass under the frost and thaw condition is of far significance. We attempt to simulate and analyze the temperature and moisture field in the surrounding rock of Dabanshan tunnel at its exit KI06+025 in the cold region by software Femlab. First, introduced the common numerical solution to the moisture and heat coupled about the soft rock in tunnels of cold region. Then gave emphasis on simulation of the law of temperature distribution coupled temperature-moisture field and draw a parallel between temperature fields with different coefficient of percolation. In the course of simulation we considered the problem of caloric receptivity, thermal conductivity and critical heat varying with temperature.
基金Century Programme of Chinese Academy of Sciences.
文摘Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.
基金Project(2010CB630800) supported by the National Basic Research Program of China
文摘A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.
文摘For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distribution, heating law in goaf and to forecast the effects of fire protection by taking the fifth section face of the No. 18 coal seam in Nanshan Coal Mine as the basis for this study. The results demonstrate that if the vertical position of the drainage laneway is so low as to cause serious air leakage, a high oxygen concentration area exists in the return side of the goaf, and there is also a high temperature region which has faster heating rate than in the other areas. The effect of methane drainage on goal heating can be alleviated dramatically by simultaneous plugging and nitrogen injection. The results show that gas data in the return side of the goaf must be detected carefully in the work face, which is of similar drainage arrangement. Therefore, comprehensive fire protection measures should be carried out if conditions permit.
基金Supported by the Technology Development Program of Jinan City (201102039,201202087)the Technology Development Program of Shandong Province (2011GNC11401)
文摘A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.
文摘The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.
文摘Refrigerant is a medium used in refrigeration cycle. Until now in thermodynamic models calculations of refrigerant is not considered with lubricant and moist air but as an ideal pure gas (without any contaminants). This is also the case in refrigeration cycle where the refrigerant is very often considered as an ideal one. Lubricant, air and water vapour are not considered in thermodynamic calculations in spite of their existence. The problems in the existing research are summarized. A further study is suggested on refrigerant systems. This circulation of such calculations is at the origin of a deviation from a theoretical behaviour. This article aims at reviewing the researches of oil-refrigerant, air-refrigerant, moist air-refrigerant or oil-moist air-refrigerant mixtures and focuses particularly on mixture enthalpy calculation. This paper deals with the description of the real mixture of refrigerant and contaminants (lubricant, water, moist air and other remains of refrigerants at elevated pressures and temperatures) which flow in a refrigerating cycle and the main point of this paper is to appoint thermodynamic parameters of such a mixture using the thermodynamic formulas.
文摘By taking a 2.3 MW double-fed asynchronous generator as an example,a new method for fast simulation analysis of ventilation cooling system inside generator is proposed based on the one-dimensional simulation software FLOWMASTER.The thermal-fluid coupling simulation model of ventilation cooling system inside generator is established.Under the stable running state of the generator,the flow velocity distribution and temperature rise of the key parts of the generator are analyzed.The results prove that the ventilation structure design of the generator meets the temperature rise limit.The simulation results are compared with the theoretical calculation results and the experimental results,which verify the correctness of the thermal-fluid coupling simulation method proposed in this paper.
文摘The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.
文摘The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors.
基金Project(08BZ1130100) supported by the Science and Technology Committee of Shanghai,ChinaProject(SHUCX102251) supported by the Innovation Fund for Graduate Student of Shanghai University,China
文摘The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.
基金Project(51171041) supported by the National Natural Science Foundation of China
文摘The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.