[Objective] The aim of the study was to find out the cold/warm change characteristics in crop growing season and their relationship with food production in Heilongjiang Province.[Method] The temporal and spatial varia...[Objective] The aim of the study was to find out the cold/warm change characteristics in crop growing season and their relationship with food production in Heilongjiang Province.[Method] The temporal and spatial variation on the accumulated temperature steadily above 10 ℃ and its lasting days,the beginning date,the ending dates were investigated,and the relationship between food production and cold/warm climate in Heilongjiang Province during 1961-2009 was further analyzed.[Result] The results showed that the provincial average accumulated temperature steadily above 10 ℃ has increased by 355.4 ℃,the lasting days of accumulated temperature steadily above 10 ℃ has extended by 13d,and the beginning date has advanced by 8 d,while the ending date has delayed by 5 d in Heilongjiang Province during 49 years.Climate warming began from the 1980s,and the most significant period of climate warming was after the 1990s.The food production is closely related to cold/warm climate in Heilongjiang Province.[Conclusion] The climate warming was significant in crop growing season of Heilongjiang Province in the past 49 years,providing more favorable climatic conditions for the agricultural production.展开更多
[Objective] This study was conducted to explain the mechanism of the accumulation characteristics of mineral elements in alpine grassland plants. [Method] Cultivated alpine grassland plant, Poa crymophila, was treated...[Objective] This study was conducted to explain the mechanism of the accumulation characteristics of mineral elements in alpine grassland plants. [Method] Cultivated alpine grassland plant, Poa crymophila, was treated with drought and wa- ter stress, and then the samples were collected and analyzed. [Result] Compared with the control group, under drought and water stress, multiple mineral elements tended to accumulate and increase, and there were significant differences in the contents of Cu, Mn, Ni and P (P〈0.05). [Conclusion] Under drought and water stress, mineral elements in potted Poa crymophila tended to accumulate and in- crease, which is the adaption and response of Poa crymophila to drought and water stress, as well as the re-verification of the starvation effect hypothesis of mineral effects. The starvation effect of mineral elements is one of the endogenic forces for the accumulation and differentiation of mineral elements in grassland plants.展开更多
Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer...Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.展开更多
Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and...Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
In this work an economical evaluation that established the viability of a low enthalpy geothermal resource as an energy source in north Africa is presented. The factors considered included the payback period, average ...In this work an economical evaluation that established the viability of a low enthalpy geothermal resource as an energy source in north Africa is presented. The factors considered included the payback period, average rate of return, net present value, and net benefit-cost ratio. The model was based on utilising the energy source to energise four models that comprised thermal equipment consisting of water/air cooled single/half effect lithium bromide water mixture absorption chillers and an R-245fa organic Rankine cycle. These modelled cycles were based on the energy demand for Waddan city a community in southern Libya which has a demand for combined cooling/electricity only or cooling/electricity with district hot water supply. The results revealed that all of the proposed simulated stand-alone models, except the water-cooled half effect chiller, are not economically viable unless they are heavily subsidized or combined with the district hot water supply at least in the winter season.展开更多
A process suitable for production on a large scale of cold light mirror for film projector is introduced. Deposition parameters required for producing TiO 2/SiO 2 optical multilayer systems by electron beam evaporatio...A process suitable for production on a large scale of cold light mirror for film projector is introduced. Deposition parameters required for producing TiO 2/SiO 2 optical multilayer systems by electron beam evaporation of TiO 2 and SiO 2 starting materials are investigated. Manufacture and techniques of cold mirror and the adhesion,stability, wear and corrosion resistance of cold mirror by this process are discussed. The result shows that cold mirror produced has good optical properties and better adhesion.展开更多
Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes...Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.展开更多
For the two-level atoms system interacting with single-mode active field in a quantum cavity, the dynamics of the Bose-Einstein Condensation (BEC) is analyzed using an ordinary method suggested by authors to solve the...For the two-level atoms system interacting with single-mode active field in a quantum cavity, the dynamics of the Bose-Einstein Condensation (BEC) is analyzed using an ordinary method suggested by authors to solve the system of Schrodinger representation in the Heisenberg representation. The wave function of the atoms is given. The stability factor determining the BEC and the selection rules of the quantum transition are solved.展开更多
Due to the small volume of goat semen ejaculate, just a few doses of goat semen were produced when the sperm concentration is 100 × 10^/mL. The study was aimed to determine the viability of extended goat semen at...Due to the small volume of goat semen ejaculate, just a few doses of goat semen were produced when the sperm concentration is 100 × 10^/mL. The study was aimed to determine the viability of extended goat semen at refrigerated condition at 5 ℃ using varying sperm concentrations and evaluated if sperm concentration lower than 100 × 10^6/mL would affect the motility, viability and sperm morphology at refrigerated condition. Using an artificial vagina, ejaculated goat semen was collected from goat semen donor aged 1.5 year. Physical evaluation of the collected semen showed an average volume of 0.54 mL, mean pH of 6.8 and a milky white color with thick consistency indicative of high concentration. Fresh goat semen had an initial average of 76% with an average initial sperm concentration of 128 × 10^/mL. The semen was divided into four treatments: sperm concentration of 100× 10^/mL, 75 × 10^/mL, 50 × 10^/mL and 25 × 10^/mL, and were stored at 5 ℃ for a period of 10 d. The semen evaluation was performed for each of the four treatments every other day. Results showed that the sperm concentration of spermatozoa affected the duration of storage based on the sperm motility percentage, viability and morphology of spermatozoa. The extended goat semen with sperm concentration of 25 and 50 million sperm/mL is optimal for storage within 6 d that gave satisfactory percentage motile, viable and morphologically normal spermatozoa.展开更多
In this paper, we use pre-column 2 times low-temperature cryo-trap enrichment--gas chromatography(GC) /nitrogen and phosphorus detector(NPD)to detect and analyze phosphine in Arctic pole area for the first time. T...In this paper, we use pre-column 2 times low-temperature cryo-trap enrichment--gas chromatography(GC) /nitrogen and phosphorus detector(NPD)to detect and analyze phosphine in Arctic pole area for the first time. The results show phosphine exists in all of the samples in Arctic pole biosphere and phosphine concentration in Arctic atmosphere is between 18.54- 132.18 ng/m^3, almost the same as that in Antarctic atmosphere; phosphine concentration in Dalian bay sea surface sediments is between 116. 8- 554.3 ng/kg, almost the same as that reported in Jiao-zhou bay. Our research of phosphine will shed new light on the mechanisms showing how the phosphorus supplement influences the biogeochemical cycle and global warming.展开更多
The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπ...The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.展开更多
A metagenomic library recombinant clone CAPL3, an Escherichia coli strain generated by transformed with metagenomic library from deep-sea sediments, can efficiently produce cold active lipase. The effects of both temp...A metagenomic library recombinant clone CAPL3, an Escherichia coli strain generated by transformed with metagenomic library from deep-sea sediments, can efficiently produce cold active lipase. The effects of both temperature and dissolved oxygen(DO) on cold active lipase production by batch culture of metagenomic library recombinant clone(CAPL3) from deep-sea sediment were investigated. First, a two-stage temperature control strategy was developed, in which the temperature was kept at 34 ℃ for the first 15 h, and then switched to30 ℃. The cold active lipase activity and productivity reached 315.2 U·ml^-1and 8.08 U·ml^-1·h^-1, respectively,increased by both 14.5% compared to the results obtained with temperature controlled at 30℃. In addition, different DO control modes were conducted, based on the data obtained from the different DO control strategies and analysis of kinetics parameters at different DO levels. A step-wise temperature and DO control strategy were developed to improve lipase production, i.e., temperature and DO level were controlled at 34℃, 30% during 0–15 h;30 ℃, 30% during 15–18 h, and 30 ℃, 20% during 18–39 h. With this strategy, the maximum lipase activity reached 354.6 U·ml^-1at 39 h, which was 28.8% higher than that achieved without temperature and DO control(275.3 U·ml^-1).展开更多
The mechanisms regulating spring phenology have been extensively studied in angiosperm species.However,given that gymnosperms and angiosperms diverged 300 million years ago,phenology may be triggered by different cues...The mechanisms regulating spring phenology have been extensively studied in angiosperm species.However,given that gymnosperms and angiosperms diverged 300 million years ago,phenology may be triggered by different cues in gymnosperm species.The regulatory mechanisms of phenology in subtropical regions remain largely unknown.In combination,it remains untested whether subtropical gymnosperm species have chilling requirements and are photosensitive.We conducted a climate chamber experiment with three chilling and three photoperiod treatments to investigate budburst during an 8-week forcing period.We tested whether budburst of eight gymnosperms species(Cryptomeria japonica,Cunninghamia lanceolata,Cupressus funebris,Ginkgo biloba,Metasequoia glyptostroboides,Pinus massoniana,Pseudolarix amabilis and Podocarpus macrophyllus)was photoperiod sensitive or has strong chilling requirements and whether photoperiod or chilling was more important for advancing budburst.Chilling advanced budburst and increased the percentage of budburst for gymnosperm species.Gymnosperm species required moderate chilling days to advance budburst.Interestingly,the forcing requirement for gymnosperm species was higher than that for angiosperms in the same forest,suggesting that gymnosperms may need more cumulative forcing to initiate budburst than do angiosperms.Compared with temperate gymnosperm species in Germany(194-600℃days),the subtropical species studied here had a much higher forcing requirement(814-1150℃days).The effects of photoperiod were minor,suggesting that chilling outweighs photoperiod in advancing budburst of gymnosperm species in this subtropical region.These results reveal that increased winter temperatures with continued global warming may impact not only angiosperms but also gymnosperms,leading to their delayed spring budburst.展开更多
The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials ...The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials with large MCEs is one of the main targets at present.In this work,we apply the chemical and hydrostatic pressures in the Ni_(35)Co_(15)Mn_(35-x)Fe_(x)Ti_(15) all-d-metal Heusler alloys and systematically investigate their crystal structures,phases,and magnetocaloric performances experimentally and theoretically.All the alloys are found to crystallize in an ordered B2-type structure at room temperature and the atoms of Fe are confirmed to all occupy at sites Mn(B).The total magnetic moments decrease gradually with increasing Fe content and decreasing of volume as well.The martensitic transformation temperature decreases with the increase of Fe content,whereas increases with increasing hydrostatic pressure.Moreover,obviously enhanced magnetocaloric performances can also be obtained by applied pressures.The maximum values of magnetic entropy change and refrigeration capacity are as high as 15.61(24.20)J(kg K)^(−1) and 109.91(347.26)J kg^(−1) withΔH=20(50)kOe,respectively.These magnetocaloric performances are superior to most of the recently reported famous materials,indicating the potential application for active MC.展开更多
基金Supported by Program for Science and Technology Development in Heilongjiang Province(GC06C103-05)~~
文摘[Objective] The aim of the study was to find out the cold/warm change characteristics in crop growing season and their relationship with food production in Heilongjiang Province.[Method] The temporal and spatial variation on the accumulated temperature steadily above 10 ℃ and its lasting days,the beginning date,the ending dates were investigated,and the relationship between food production and cold/warm climate in Heilongjiang Province during 1961-2009 was further analyzed.[Result] The results showed that the provincial average accumulated temperature steadily above 10 ℃ has increased by 355.4 ℃,the lasting days of accumulated temperature steadily above 10 ℃ has extended by 13d,and the beginning date has advanced by 8 d,while the ending date has delayed by 5 d in Heilongjiang Province during 49 years.Climate warming began from the 1980s,and the most significant period of climate warming was after the 1990s.The food production is closely related to cold/warm climate in Heilongjiang Province.[Conclusion] The climate warming was significant in crop growing season of Heilongjiang Province in the past 49 years,providing more favorable climatic conditions for the agricultural production.
文摘[Objective] This study was conducted to explain the mechanism of the accumulation characteristics of mineral elements in alpine grassland plants. [Method] Cultivated alpine grassland plant, Poa crymophila, was treated with drought and wa- ter stress, and then the samples were collected and analyzed. [Result] Compared with the control group, under drought and water stress, multiple mineral elements tended to accumulate and increase, and there were significant differences in the contents of Cu, Mn, Ni and P (P〈0.05). [Conclusion] Under drought and water stress, mineral elements in potted Poa crymophila tended to accumulate and in- crease, which is the adaption and response of Poa crymophila to drought and water stress, as well as the re-verification of the starvation effect hypothesis of mineral effects. The starvation effect of mineral elements is one of the endogenic forces for the accumulation and differentiation of mineral elements in grassland plants.
基金financial supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natural Science Foundation of China (No. 51674303)+2 种基金the Huxiang High-level Talent Gathering Project of Hunan Province, China (No. 2018RS3015)the Innovation Driven Program of Central South University, China (No. 2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University, China。
文摘Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.
基金Projects(52075317,51905333)supported by the National Natural Science Foundation of ChinaProject(IEC\NSFC\181278)supported by the Royal Society through International Exchanges 2018 Cost Share(China)Scheme+2 种基金Project(19YF1418100)supported by Shanghai Sailing Program,ChinaProjects(19511106400,19511106402)supported by Shanghai Science and Technology Committee Innovation,ChinaProject(19030501300)supported by Shanghai Local Colleges and Universities Capacity Building Special Plan,China。
文摘Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
文摘In this work an economical evaluation that established the viability of a low enthalpy geothermal resource as an energy source in north Africa is presented. The factors considered included the payback period, average rate of return, net present value, and net benefit-cost ratio. The model was based on utilising the energy source to energise four models that comprised thermal equipment consisting of water/air cooled single/half effect lithium bromide water mixture absorption chillers and an R-245fa organic Rankine cycle. These modelled cycles were based on the energy demand for Waddan city a community in southern Libya which has a demand for combined cooling/electricity only or cooling/electricity with district hot water supply. The results revealed that all of the proposed simulated stand-alone models, except the water-cooled half effect chiller, are not economically viable unless they are heavily subsidized or combined with the district hot water supply at least in the winter season.
文摘A process suitable for production on a large scale of cold light mirror for film projector is introduced. Deposition parameters required for producing TiO 2/SiO 2 optical multilayer systems by electron beam evaporation of TiO 2 and SiO 2 starting materials are investigated. Manufacture and techniques of cold mirror and the adhesion,stability, wear and corrosion resistance of cold mirror by this process are discussed. The result shows that cold mirror produced has good optical properties and better adhesion.
基金supported by the National Natural Science Foundation of China (Grant No. 41371009)the Fundamental Research Fund for the Central Universities of China (Grant No. lzujbky2013-127)
文摘Ecosystem response to climate change in high-altitude regions is a focus on global change research. Picea/Abies forests are widely distributed at high altitudes of East and Central Asia, and their distribution changes are sensitive to climate change. Humidity is an important climatic factor that affects high-altitude ecosystems; however, the relationship between distribution changes of Picea/Abies forests and millennial-scale variability of humidity is still not dear. Palynological records can provide insights into millennial-scale paleovegetation changes, which have been successfully used to reconstruct past climate change in East and Central Asia. In this study, we synthesized 24 Picea/Abies pollen and humidity/moisture changes based upon Holocene lake records in East and Central Asia in order to explore the response of high-latitude ecosystem to millennial-scale climate change. The changing pattern of Holocene lacustrine Picea/Abies pollen in arid Central Asia differs from that of monsoonal East Asia, which can be due to different millennial-scale climate change patterns between monsoonal and arid Central Asia. Then, the relationship between changes in Picea/Abies pollen and humidity/moisture conditions was examined based on a comparison of pollen and humidity/moisture records. The results indicate that millennial-scale Picea/Abies distribution changes aremainly controlled by moisture variability at high altitudes, while the temperature effect plays a minor role in Picea/Abies distribution changes. Moreover, this research proves that lacustrine Picea/Abies pollen can be used as an indicator of millennial-scale humidity/moisture evolution at high altitudes in East and Central Asia.
文摘For the two-level atoms system interacting with single-mode active field in a quantum cavity, the dynamics of the Bose-Einstein Condensation (BEC) is analyzed using an ordinary method suggested by authors to solve the system of Schrodinger representation in the Heisenberg representation. The wave function of the atoms is given. The stability factor determining the BEC and the selection rules of the quantum transition are solved.
文摘Due to the small volume of goat semen ejaculate, just a few doses of goat semen were produced when the sperm concentration is 100 × 10^/mL. The study was aimed to determine the viability of extended goat semen at refrigerated condition at 5 ℃ using varying sperm concentrations and evaluated if sperm concentration lower than 100 × 10^6/mL would affect the motility, viability and sperm morphology at refrigerated condition. Using an artificial vagina, ejaculated goat semen was collected from goat semen donor aged 1.5 year. Physical evaluation of the collected semen showed an average volume of 0.54 mL, mean pH of 6.8 and a milky white color with thick consistency indicative of high concentration. Fresh goat semen had an initial average of 76% with an average initial sperm concentration of 128 × 10^/mL. The semen was divided into four treatments: sperm concentration of 100× 10^/mL, 75 × 10^/mL, 50 × 10^/mL and 25 × 10^/mL, and were stored at 5 ℃ for a period of 10 d. The semen evaluation was performed for each of the four treatments every other day. Results showed that the sperm concentration of spermatozoa affected the duration of storage based on the sperm motility percentage, viability and morphology of spermatozoa. The extended goat semen with sperm concentration of 25 and 50 million sperm/mL is optimal for storage within 6 d that gave satisfactory percentage motile, viable and morphologically normal spermatozoa.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2008AA09Z114)the Polar Science Research Foundation ( No. 20070214)the Opening Foundation ( No. PCRRF08016) of State Key Laboratory of Pollution Control and Resource Reuse Nanjing University and the National Ocean science Foundation (No. 2008614)
文摘In this paper, we use pre-column 2 times low-temperature cryo-trap enrichment--gas chromatography(GC) /nitrogen and phosphorus detector(NPD)to detect and analyze phosphine in Arctic pole area for the first time. The results show phosphine exists in all of the samples in Arctic pole biosphere and phosphine concentration in Arctic atmosphere is between 18.54- 132.18 ng/m^3, almost the same as that in Antarctic atmosphere; phosphine concentration in Dalian bay sea surface sediments is between 116. 8- 554.3 ng/kg, almost the same as that reported in Jiao-zhou bay. Our research of phosphine will shed new light on the mechanisms showing how the phosphorus supplement influences the biogeochemical cycle and global warming.
基金Project(51171041) supported by the National Natural Science Foundation of China
文摘The boiling heat transfer of evaporation cooling in a billet reheating furnace was simulated.The results indicate that the bubbles easily aggregate inside of the elbow and upper side of the horizontal regions in theπshaped support tubes.The circulation velocity increasing helps to improve the uniformity of vapor distribution and decrease the difference of vapor volume fraction between upper and down at end of the horizontal sections.With the increase of circulation velocity,the resistance loss and the circulation ratio both increase,but the former will decrease with the increase of work pressure.
基金Supported by the Hi-Tech Research and Development Program of China(863 program of China2012AA092103)China Ocean Mineral Resources R&D Association(DY125-15-T-06)
文摘A metagenomic library recombinant clone CAPL3, an Escherichia coli strain generated by transformed with metagenomic library from deep-sea sediments, can efficiently produce cold active lipase. The effects of both temperature and dissolved oxygen(DO) on cold active lipase production by batch culture of metagenomic library recombinant clone(CAPL3) from deep-sea sediment were investigated. First, a two-stage temperature control strategy was developed, in which the temperature was kept at 34 ℃ for the first 15 h, and then switched to30 ℃. The cold active lipase activity and productivity reached 315.2 U·ml^-1and 8.08 U·ml^-1·h^-1, respectively,increased by both 14.5% compared to the results obtained with temperature controlled at 30℃. In addition, different DO control modes were conducted, based on the data obtained from the different DO control strategies and analysis of kinetics parameters at different DO levels. A step-wise temperature and DO control strategy were developed to improve lipase production, i.e., temperature and DO level were controlled at 34℃, 30% during 0–15 h;30 ℃, 30% during 15–18 h, and 30 ℃, 20% during 18–39 h. With this strategy, the maximum lipase activity reached 354.6 U·ml^-1at 39 h, which was 28.8% higher than that achieved without temperature and DO control(275.3 U·ml^-1).
基金supported by the Innovative Research Team Program of Hainan Natural Science Fund(2018CXTD331)the Natural Science Foundation of Hainan Province(320RC504)Hainan University(KYQD(ZR)1979).
文摘The mechanisms regulating spring phenology have been extensively studied in angiosperm species.However,given that gymnosperms and angiosperms diverged 300 million years ago,phenology may be triggered by different cues in gymnosperm species.The regulatory mechanisms of phenology in subtropical regions remain largely unknown.In combination,it remains untested whether subtropical gymnosperm species have chilling requirements and are photosensitive.We conducted a climate chamber experiment with three chilling and three photoperiod treatments to investigate budburst during an 8-week forcing period.We tested whether budburst of eight gymnosperms species(Cryptomeria japonica,Cunninghamia lanceolata,Cupressus funebris,Ginkgo biloba,Metasequoia glyptostroboides,Pinus massoniana,Pseudolarix amabilis and Podocarpus macrophyllus)was photoperiod sensitive or has strong chilling requirements and whether photoperiod or chilling was more important for advancing budburst.Chilling advanced budburst and increased the percentage of budburst for gymnosperm species.Gymnosperm species required moderate chilling days to advance budburst.Interestingly,the forcing requirement for gymnosperm species was higher than that for angiosperms in the same forest,suggesting that gymnosperms may need more cumulative forcing to initiate budburst than do angiosperms.Compared with temperate gymnosperm species in Germany(194-600℃days),the subtropical species studied here had a much higher forcing requirement(814-1150℃days).The effects of photoperiod were minor,suggesting that chilling outweighs photoperiod in advancing budburst of gymnosperm species in this subtropical region.These results reveal that increased winter temperatures with continued global warming may impact not only angiosperms but also gymnosperms,leading to their delayed spring budburst.
基金supported by the National Natural Science Foundation of China(52001102 and 91963123)the Ten Thousand Talents Plan of Zhejiang Province of China(2018R52003)the Fundamental Research Funds for the Provincial University of Zhejiang(GK199900299012-022)。
文摘The solid-state magnetic cooling(MC)method based on the magnetocaloric effect(MCE)is recognized as an environmentally friendly and high-energy-efficiency technology.The search or design of suitable magnetic materials with large MCEs is one of the main targets at present.In this work,we apply the chemical and hydrostatic pressures in the Ni_(35)Co_(15)Mn_(35-x)Fe_(x)Ti_(15) all-d-metal Heusler alloys and systematically investigate their crystal structures,phases,and magnetocaloric performances experimentally and theoretically.All the alloys are found to crystallize in an ordered B2-type structure at room temperature and the atoms of Fe are confirmed to all occupy at sites Mn(B).The total magnetic moments decrease gradually with increasing Fe content and decreasing of volume as well.The martensitic transformation temperature decreases with the increase of Fe content,whereas increases with increasing hydrostatic pressure.Moreover,obviously enhanced magnetocaloric performances can also be obtained by applied pressures.The maximum values of magnetic entropy change and refrigeration capacity are as high as 15.61(24.20)J(kg K)^(−1) and 109.91(347.26)J kg^(−1) withΔH=20(50)kOe,respectively.These magnetocaloric performances are superior to most of the recently reported famous materials,indicating the potential application for active MC.