An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati...An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.展开更多
This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) ...This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.展开更多
Ice thermal storage is a promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper investigates the application of ice thermal storage and its impact on energ...Ice thermal storage is a promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper investigates the application of ice thermal storage and its impact on energy consumption, demand and total energy cost. Energy simulation software along with a chiller model is used to simulate the energy consumption and demand for the existing office building located in central Florida. Furthermore, the study presents a case study to demonstrate the cost saving achieved by the ice storage applications. The results show that although the energy consumption may increase by using ice thermal storage, the energy cost drops significantly, mainly depending on the local utility rate structure. It found that for the investigated system the annual energy consumption increases by about 12% but the annual energy cost drops by about 3 6%.展开更多
In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy ...In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.展开更多
The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order t...The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order to predict the behaviors of the adsorption chiller system and find the influence of working conditions on its operation. For the working process of the main components of the system, including adsorber, condenser and evaporator, the coupled unsteady equations were set up for each stage. The model was then solved using stable numerical methods from EES (equation engineering solver), and the performance of the adsorber and condenser/evaporator of the system was analyzed. The condensation, evaporation and adsorber temperature values as well as the adsorption ratio and desorption ratio were obtained as function of operating time. Also, the coefficient of performance was analyzed in function of the heat source temperature and the cooling source temperature.展开更多
A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were c...A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were calculated by the mathematical model.The solution content first increases and then decreases along the solution flow direction.At y/Hr=0.98(where Hr is the height of regenerator),air humidity increases from 1.99% to 2.348% firstly and then decreases.The experimental results were used to validate mathematical model.It is indicated that the simulation results agree with experimental data well.The results not only show that the mathematical model can be used to predict the performance of regenerator,but also has great value in the design and improvement of evaporative condensing regenerator.展开更多
This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The pr...This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The proposed trigeneration system is based on mCHP (micro-combined heat and power) unit with Stirling engine, photovoltaic panels, thermal solar collector and pellet boiler. The proposed mCCHP system utilizes the exceeding amount of heat in the summer for producing the necessary cooling. A residential building with known energy consumption is determined load curves that must be covered by mCCHP system. The paper analyzes four structures of trigeneration systems with thermal activation chiller and two structures of trigeneration systems with mechanical compression chiller. Performance indicators are determined based on energy balance equations for each variant. It compares the performances and establishes the best option.展开更多
During last decades the solar passive heating of buildings found rather wide application. It has been used effectively in an estimated 17,000 commercial buildings in the United States-ranging from offices to schools, ...During last decades the solar passive heating of buildings found rather wide application. It has been used effectively in an estimated 17,000 commercial buildings in the United States-ranging from offices to schools, and airport terminals. At present there exist two main types of solar houses, "house collector" and "wall collector". A part of researchers find that the use of"house collector" is more simple and efficient. The other part is sure that "wall collector" is more convenient to use and it has higher efficiency. But our analysis show that in existing literature there is not any method for evaluating efficiency of solar houses. Moreover, there is not in. use a concept on solar houses efficiency. To us each type of solar houses has its own advantages and disadvantages. In this paper solar passive "House-Collector" heating modes of houses and their efficiency are discussed. For calculation of designing parameters of solar houses a simplified method is presented, taking into consideration both the heat gains and heat losses.展开更多
In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed i...In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to l13K-283K by high- efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t'h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.展开更多
Land use change and its eco-environmental responses are foci in geographical research. As a region with uneven economic development, land use change and eco-environmental responses across Jiangsu Province are relevant...Land use change and its eco-environmental responses are foci in geographical research. As a region with uneven economic development, land use change and eco-environmental responses across Jiangsu Province are relevant to China's overall development pattern. The external function of regional land use changes during different stages of economic development. In this study, we proposed a novel classification system based on the dominant function of land use according to "production-ecology-life", and then analyzed land use change and regional eco-environmental responses from a functional perspective of regional development. The results showed that from 1985 to 2008, land use change features in Jiangsu were that productive land area decreased and eco- logical and living land areas increased. Land use changes in southern Jiangsu were the most dramatic. In southern and central parts of Jiangsu the agricultural production function weakened and urban life service function strengthened; in northern Jiangsu, the mining production function's comparative advantage highlighted that the rural life service function was weakening. Ecological environmental quality decreased slightly in Jiangsu and its three regions. The maximum contribution rate to ecological environmental change occurred in southern Jiangsu and the minimum rate was located in the north. Eco-environmental quality deteriorated in southern and central Jiangsu, related to expanding construction land in urban and rural areas. Ecological environmental quality deterioration in northern Jiangsu is probably due to land development and consolidation. The main reason for improvements in regional ecological environments is that agricultural production land was converted to water ecological land across Jiangsu.展开更多
Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades...Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades or endwalls to build up a film shielding the material. The holes often are inclined in the downstream direction and give rise to a kidney vortex. This is a counter-rotating vortex pair, with an upward flow direction between the two vortices, which tends to lift off the surface and to locally feed hot air towards the blade outside the pair. Reversing the rotational sense of the vortices reverses these two drawbacks into advantages. In the considered case, an anti-kidney vortex is generated using two subsequent rows of holes both inclined downstream and yawed spanwise with alternating angles. In a previous study, we performed large-eddy simulations (which focused on the fully turbulent boundary layer) of this anti-kidney vortex film-cooling and compared them to a corresponding physical experiment. The present work analyzes the simulated flow field in detail, beginning in the plenum (inside the blade or endwall) through the holes up to the mixture with the hot boundary layer. To identify the vortical structures found in the mean flow and in the instantaneous flow, we mostly use the λ 2 criterion and the line integral convolution (LIC) technique indicating sectional streamlines. The flow regions (coolant plenum, holes, and boundary layer) are studied subsequently and linked to each other. To track the anti-kidney vortex throughout the boundary layer, we propose two criteria which are based on vorticity and on LIC results. This enables us to associate the jet vortices with the cooling effectiveness at the wall, which is the key feature of film cooling.展开更多
This study constructed a mathematic model of a variable frequency centrifugal chiller using Simulink software. By running the simulation, it was discovered that when the other factors are constant, the EER(Energy Effi...This study constructed a mathematic model of a variable frequency centrifugal chiller using Simulink software. By running the simulation, it was discovered that when the other factors are constant, the EER(Energy Efficiency Ratio) of the chiller increases with decreases in the temperature of the cooling water and increases in the temperature of the chilled water. The effect of changes in the cooling water temperature on the EER of the chiller is stronger than that of changes in the chilled water temperature. In addition, as the chiller load decreases, the EER increases until reaching a maximum, after which it decreases. Furthermore, the EER of chillers working under a constant flow rate is slightly higher than that of those working under varying flow rates.展开更多
文摘An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.
文摘This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES) system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.
文摘Ice thermal storage is a promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper investigates the application of ice thermal storage and its impact on energy consumption, demand and total energy cost. Energy simulation software along with a chiller model is used to simulate the energy consumption and demand for the existing office building located in central Florida. Furthermore, the study presents a case study to demonstrate the cost saving achieved by the ice storage applications. The results show that although the energy consumption may increase by using ice thermal storage, the energy cost drops significantly, mainly depending on the local utility rate structure. It found that for the investigated system the annual energy consumption increases by about 12% but the annual energy cost drops by about 3 6%.
基金SupportedbytheSpecializedResearchFundfortheDoctoralProgramofHigherEducation (No .D0 2 0 0 10 5)
文摘In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.
文摘The thermodynamic cycle for an adsorption system is presented inp-T diagram. In order to investigate the performance of the adsorption system, a lumped parameter transient model of the chiller is developed, in order to predict the behaviors of the adsorption chiller system and find the influence of working conditions on its operation. For the working process of the main components of the system, including adsorber, condenser and evaporator, the coupled unsteady equations were set up for each stage. The model was then solved using stable numerical methods from EES (equation engineering solver), and the performance of the adsorber and condenser/evaporator of the system was analyzed. The condensation, evaporation and adsorber temperature values as well as the adsorption ratio and desorption ratio were obtained as function of operating time. Also, the coefficient of performance was analyzed in function of the heat source temperature and the cooling source temperature.
基金Project(PHR201007127) supported by Academic Human Resources Development Fund of Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China Project(bsbe2010-05) supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment, China Project supported by the Doctoral Startup Foundation of Beijing University of Civil Engineering and Architecture, China
文摘A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were calculated by the mathematical model.The solution content first increases and then decreases along the solution flow direction.At y/Hr=0.98(where Hr is the height of regenerator),air humidity increases from 1.99% to 2.348% firstly and then decreases.The experimental results were used to validate mathematical model.It is indicated that the simulation results agree with experimental data well.The results not only show that the mathematical model can be used to predict the performance of regenerator,but also has great value in the design and improvement of evaporative condensing regenerator.
文摘This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The proposed trigeneration system is based on mCHP (micro-combined heat and power) unit with Stirling engine, photovoltaic panels, thermal solar collector and pellet boiler. The proposed mCCHP system utilizes the exceeding amount of heat in the summer for producing the necessary cooling. A residential building with known energy consumption is determined load curves that must be covered by mCCHP system. The paper analyzes four structures of trigeneration systems with thermal activation chiller and two structures of trigeneration systems with mechanical compression chiller. Performance indicators are determined based on energy balance equations for each variant. It compares the performances and establishes the best option.
文摘During last decades the solar passive heating of buildings found rather wide application. It has been used effectively in an estimated 17,000 commercial buildings in the United States-ranging from offices to schools, and airport terminals. At present there exist two main types of solar houses, "house collector" and "wall collector". A part of researchers find that the use of"house collector" is more simple and efficient. The other part is sure that "wall collector" is more convenient to use and it has higher efficiency. But our analysis show that in existing literature there is not any method for evaluating efficiency of solar houses. Moreover, there is not in. use a concept on solar houses efficiency. To us each type of solar houses has its own advantages and disadvantages. In this paper solar passive "House-Collector" heating modes of houses and their efficiency are discussed. For calculation of designing parameters of solar houses a simplified method is presented, taking into consideration both the heat gains and heat losses.
文摘In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to l13K-283K by high- efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t'h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.
基金National Natural Science Foundation of China(71503117,41301651)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Land use change and its eco-environmental responses are foci in geographical research. As a region with uneven economic development, land use change and eco-environmental responses across Jiangsu Province are relevant to China's overall development pattern. The external function of regional land use changes during different stages of economic development. In this study, we proposed a novel classification system based on the dominant function of land use according to "production-ecology-life", and then analyzed land use change and regional eco-environmental responses from a functional perspective of regional development. The results showed that from 1985 to 2008, land use change features in Jiangsu were that productive land area decreased and eco- logical and living land areas increased. Land use changes in southern Jiangsu were the most dramatic. In southern and central parts of Jiangsu the agricultural production function weakened and urban life service function strengthened; in northern Jiangsu, the mining production function's comparative advantage highlighted that the rural life service function was weakening. Ecological environmental quality decreased slightly in Jiangsu and its three regions. The maximum contribution rate to ecological environmental change occurred in southern Jiangsu and the minimum rate was located in the north. Eco-environmental quality deteriorated in southern and central Jiangsu, related to expanding construction land in urban and rural areas. Ecological environmental quality deterioration in northern Jiangsu is probably due to land development and consolidation. The main reason for improvements in regional ecological environments is that agricultural production land was converted to water ecological land across Jiangsu.
基金partly funded by Swiss National Science Foundation (SNF) with project number 200020-116310granted by the DEISA Consortium,co-funded throughthe EU FP7 project RI-222919the DEISA Extreme Computing Initiative under the project acronym FCool3
文摘Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades or endwalls to build up a film shielding the material. The holes often are inclined in the downstream direction and give rise to a kidney vortex. This is a counter-rotating vortex pair, with an upward flow direction between the two vortices, which tends to lift off the surface and to locally feed hot air towards the blade outside the pair. Reversing the rotational sense of the vortices reverses these two drawbacks into advantages. In the considered case, an anti-kidney vortex is generated using two subsequent rows of holes both inclined downstream and yawed spanwise with alternating angles. In a previous study, we performed large-eddy simulations (which focused on the fully turbulent boundary layer) of this anti-kidney vortex film-cooling and compared them to a corresponding physical experiment. The present work analyzes the simulated flow field in detail, beginning in the plenum (inside the blade or endwall) through the holes up to the mixture with the hot boundary layer. To identify the vortical structures found in the mean flow and in the instantaneous flow, we mostly use the λ 2 criterion and the line integral convolution (LIC) technique indicating sectional streamlines. The flow regions (coolant plenum, holes, and boundary layer) are studied subsequently and linked to each other. To track the anti-kidney vortex throughout the boundary layer, we propose two criteria which are based on vorticity and on LIC results. This enables us to associate the jet vortices with the cooling effectiveness at the wall, which is the key feature of film cooling.
基金supported by a Grant-in-Aid for Scientific Research through grant number KM200610016003 from the Beijing Municipal Commission of Education
文摘This study constructed a mathematic model of a variable frequency centrifugal chiller using Simulink software. By running the simulation, it was discovered that when the other factors are constant, the EER(Energy Efficiency Ratio) of the chiller increases with decreases in the temperature of the cooling water and increases in the temperature of the chilled water. The effect of changes in the cooling water temperature on the EER of the chiller is stronger than that of changes in the chilled water temperature. In addition, as the chiller load decreases, the EER increases until reaching a maximum, after which it decreases. Furthermore, the EER of chillers working under a constant flow rate is slightly higher than that of those working under varying flow rates.