A new type of liquid desiccant water chiller for applications on air-conditioning and refrigeration is introduced.The system can be driven by low-grade heat sources with temperatures of 60 to 80 ℃,which can be easily...A new type of liquid desiccant water chiller for applications on air-conditioning and refrigeration is introduced.The system can be driven by low-grade heat sources with temperatures of 60 to 80 ℃,which can be easily obtained by a flat plat solar collector,waste heat,etc.A numerical model is developed to study the system performance.The effects of different parameters on performance are discussed,including evaporating temperature,regenerating temperature,ambient condition,and mass flow rates of closed moist air and regenerating air.The results show that an acceptable performance of a cooling capacity of 2.5 kW and a coefficient of performance of 0.37 can be achieved in a reference case.The regenerating temperature and the humidity ratios of ambient air are two main factors affecting system performance,while the temperature of ambient air functions less.In addition,the mass flow rate of regenerating air and closed moist air should be carefully determined for economical operation.展开更多
Ice thermal storage is a promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper investigates the application of ice thermal storage and its impact on energ...Ice thermal storage is a promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper investigates the application of ice thermal storage and its impact on energy consumption, demand and total energy cost. Energy simulation software along with a chiller model is used to simulate the energy consumption and demand for the existing office building located in central Florida. Furthermore, the study presents a case study to demonstrate the cost saving achieved by the ice storage applications. The results show that although the energy consumption may increase by using ice thermal storage, the energy cost drops significantly, mainly depending on the local utility rate structure. It found that for the investigated system the annual energy consumption increases by about 12% but the annual energy cost drops by about 3 6%.展开更多
The reliable assessment of the annual energy demand has become necessary in view of building energy performance certification. Accurate models must be used to simulate the behaviour of HVAC (heating, ventilation and ...The reliable assessment of the annual energy demand has become necessary in view of building energy performance certification. Accurate models must be used to simulate the behaviour of HVAC (heating, ventilation and air conditioning) components in real operation, usually characterized by a wide variation of building loads. In this context, this paper deals with the development and validation of an algorithm aimed at the assessment of part load performance of various kinds of controls for vapour compresion based heat pumps and chillers, in particular referring to on-off, inverter-driven and multi-stage vapour compression. The reliability of this algorithm in the calculation of seasonal performances is checked against monitoring of heat pumps and chillers operating under real conditions.展开更多
In China, REC (residential energy consumption) is the second largest energy use category (10%) following the industry. To fulfill the Chinese government's commitment that Chinese CO2 emissions would peak in 2030,...In China, REC (residential energy consumption) is the second largest energy use category (10%) following the industry. To fulfill the Chinese government's commitment that Chinese CO2 emissions would peak in 2030, as a result, improving the energy efficiency and reducing the emissions from the building sector is significantly important. A survey, in the form of a questionnaire, of energy consumption and thermal situation in different residential building types (detached house, multi-story building, high-rise building), was undertaken in three cities (Shanghai, Hangzhou, and Changzhou) in hot-summer and cold-winter regions, these three cities were selected to represent the most flourishing economic provinces. This region in China was selected for the evaluation of EETP (energy and thermal performance analysis), because of its special weather conditions, huge energy consumption (as both heating in winter and cooling in summer are necessary), and other regional characteristics. 183 households were sampled and experiments were separately done in typical examples of three different building types. Systematic evaluation on EETP for three different residential building types, were put forward to assess the energy efficiency and thermal performance of three different building types.展开更多
The combined use of dry cooling(DC) system and dedicated ventilation(DV) system to decouple cooling and dehumidification process for energy efficiency was proposed for subtropical climates like Hong Kong. In this stud...The combined use of dry cooling(DC) system and dedicated ventilation(DV) system to decouple cooling and dehumidification process for energy efficiency was proposed for subtropical climates like Hong Kong. In this study, the energy performance and condensation risk of the use of DCDV system were examined by analyzing its application in a typical office building in Hong Kong. Through hour-by-hour simulation using actual equipment performance data and realistic building and system characteristics, it was found that with the use of DCDV system, the annual energy consumption could be reduced by 54% in comparison with the conventional system(constant air volume with reheat system). In respect of condensation risk, it was found that the annual frequency of occurrence of condensation on DC coil was 35 h. Additional simulations were conducted to examine the influence of different parameters on the condensation risk of DCDV system. Measures to ensure condensate-free on DC coil were also discussed.展开更多
We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector...We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector and is gapless. The quasiparticles and quasiholes are ehiral and show Berry's phase π when the wavevector adiabatically evolves along a closed circle, Furthermore, the experimental detection of the energy spectrum is proposed with Bragg scattering techniques.展开更多
This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathemati...This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.展开更多
The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of...The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of cooling load and the increment of heating load of a shading window compared with those of a transparent window show the prospect of energy saving effect clearly.From southeastward to southwestward, shading window even enlarges total heating and cooling loads when the thermal transmission is the same. However, if the shading coefficient of window is switched between summer and winter, total cooling and heating load can be reduced. This result clarifies the importance of "smart window".展开更多
This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The pr...This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The proposed trigeneration system is based on mCHP (micro-combined heat and power) unit with Stirling engine, photovoltaic panels, thermal solar collector and pellet boiler. The proposed mCCHP system utilizes the exceeding amount of heat in the summer for producing the necessary cooling. A residential building with known energy consumption is determined load curves that must be covered by mCCHP system. The paper analyzes four structures of trigeneration systems with thermal activation chiller and two structures of trigeneration systems with mechanical compression chiller. Performance indicators are determined based on energy balance equations for each variant. It compares the performances and establishes the best option.展开更多
基金The National Natural Science Foundation of China(No.50976021)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2007BA000875)
文摘A new type of liquid desiccant water chiller for applications on air-conditioning and refrigeration is introduced.The system can be driven by low-grade heat sources with temperatures of 60 to 80 ℃,which can be easily obtained by a flat plat solar collector,waste heat,etc.A numerical model is developed to study the system performance.The effects of different parameters on performance are discussed,including evaporating temperature,regenerating temperature,ambient condition,and mass flow rates of closed moist air and regenerating air.The results show that an acceptable performance of a cooling capacity of 2.5 kW and a coefficient of performance of 0.37 can be achieved in a reference case.The regenerating temperature and the humidity ratios of ambient air are two main factors affecting system performance,while the temperature of ambient air functions less.In addition,the mass flow rate of regenerating air and closed moist air should be carefully determined for economical operation.
文摘Ice thermal storage is a promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper investigates the application of ice thermal storage and its impact on energy consumption, demand and total energy cost. Energy simulation software along with a chiller model is used to simulate the energy consumption and demand for the existing office building located in central Florida. Furthermore, the study presents a case study to demonstrate the cost saving achieved by the ice storage applications. The results show that although the energy consumption may increase by using ice thermal storage, the energy cost drops significantly, mainly depending on the local utility rate structure. It found that for the investigated system the annual energy consumption increases by about 12% but the annual energy cost drops by about 3 6%.
文摘The reliable assessment of the annual energy demand has become necessary in view of building energy performance certification. Accurate models must be used to simulate the behaviour of HVAC (heating, ventilation and air conditioning) components in real operation, usually characterized by a wide variation of building loads. In this context, this paper deals with the development and validation of an algorithm aimed at the assessment of part load performance of various kinds of controls for vapour compresion based heat pumps and chillers, in particular referring to on-off, inverter-driven and multi-stage vapour compression. The reliability of this algorithm in the calculation of seasonal performances is checked against monitoring of heat pumps and chillers operating under real conditions.
文摘In China, REC (residential energy consumption) is the second largest energy use category (10%) following the industry. To fulfill the Chinese government's commitment that Chinese CO2 emissions would peak in 2030, as a result, improving the energy efficiency and reducing the emissions from the building sector is significantly important. A survey, in the form of a questionnaire, of energy consumption and thermal situation in different residential building types (detached house, multi-story building, high-rise building), was undertaken in three cities (Shanghai, Hangzhou, and Changzhou) in hot-summer and cold-winter regions, these three cities were selected to represent the most flourishing economic provinces. This region in China was selected for the evaluation of EETP (energy and thermal performance analysis), because of its special weather conditions, huge energy consumption (as both heating in winter and cooling in summer are necessary), and other regional characteristics. 183 households were sampled and experiments were separately done in typical examples of three different building types. Systematic evaluation on EETP for three different residential building types, were put forward to assess the energy efficiency and thermal performance of three different building types.
基金Supported by Competitive Earmarked Research Grant of Hong Kong Government(CERG No.522709)
文摘The combined use of dry cooling(DC) system and dedicated ventilation(DV) system to decouple cooling and dehumidification process for energy efficiency was proposed for subtropical climates like Hong Kong. In this study, the energy performance and condensation risk of the use of DCDV system were examined by analyzing its application in a typical office building in Hong Kong. Through hour-by-hour simulation using actual equipment performance data and realistic building and system characteristics, it was found that with the use of DCDV system, the annual energy consumption could be reduced by 54% in comparison with the conventional system(constant air volume with reheat system). In respect of condensation risk, it was found that the annual frequency of occurrence of condensation on DC coil was 35 h. Additional simulations were conducted to examine the influence of different parameters on the condensation risk of DCDV system. Measures to ensure condensate-free on DC coil were also discussed.
基金Supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We investigate ultracold fermionic atoms in the trilayer honeycomb lattice. In the low energy approximation, we derive an effective Hamiltonian for pseudospins. The energy spectrum shows a cubic form of the wavevector and is gapless. The quasiparticles and quasiholes are ehiral and show Berry's phase π when the wavevector adiabatically evolves along a closed circle, Furthermore, the experimental detection of the energy spectrum is proposed with Bragg scattering techniques.
文摘This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.
文摘The energy saving performance of energy efficient windows has strong dependence on window direction. Transmitted insolation level definitely affected the cooling and heating load. Simple simulation on the decrement of cooling load and the increment of heating load of a shading window compared with those of a transparent window show the prospect of energy saving effect clearly.From southeastward to southwestward, shading window even enlarges total heating and cooling loads when the thermal transmission is the same. However, if the shading coefficient of window is switched between summer and winter, total cooling and heating load can be reduced. This result clarifies the importance of "smart window".
文摘This paper refers to an integrated mCCHP (micro-combined cooling heat and power) systems dedicated for isolated residents with energetic independence. The only energy sources are wood pellet and solar energy. The proposed trigeneration system is based on mCHP (micro-combined heat and power) unit with Stirling engine, photovoltaic panels, thermal solar collector and pellet boiler. The proposed mCCHP system utilizes the exceeding amount of heat in the summer for producing the necessary cooling. A residential building with known energy consumption is determined load curves that must be covered by mCCHP system. The paper analyzes four structures of trigeneration systems with thermal activation chiller and two structures of trigeneration systems with mechanical compression chiller. Performance indicators are determined based on energy balance equations for each variant. It compares the performances and establishes the best option.