To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invari...To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invariance principle was used to realize static decoupling between the speed and tension of reversible cold strip mill. Then, considering the influence caused by the time variation of steel coil radius and rotational inertia of the left and right coilers, as well as the uncertainties, a CC strategy that is composed of extended state observer(ESO) and global sliding mode control(GSMC) with backstepping adaptive was proposed,which further realized dynamic decoupling and coordination control for the speed and tension system. Theoretical analysis shows that the resulting closed-loop system is global bounded stable. Finally, the simulation was carried out on the speed and tension system of a 1422 mm reversible cold strip mill by using the actual data, and through the comparison of the other control strategies, validity of the proposed CC strategy was shown by the results.展开更多
In this paper,nano-Cu particles with an average size of smaller than 20 nm were dispersed under ultrasonic agitation in emulsions for cold rolling of steel strips.The tribological properties of the cold rolling emulsi...In this paper,nano-Cu particles with an average size of smaller than 20 nm were dispersed under ultrasonic agitation in emulsions for cold rolling of steel strips.The tribological properties of the cold rolling emulsion doped with nano-Cu particles were evaluated by using a four-ball machine,and the worn surfaces of the steel balls were checked by an optical microscope.A JC2000C1 wetting angle tester was also applied to study the variation in the emulsion's wetting performance when nano-Cu particles were incorporated.Furthermore,the lubricity of the emulsion doped with nano-Cu for steel strip cold rolling was evaluated on a four-high rolling mill for comparison with the emulsion without using nano-Cu particles.Test results indicated that nano-Cu particles as the additive used in cold rolling emulsion were able to improve the wetting property,friction-reducing,anti-wear,and extreme pressure performance of the base stock significantly.At the same time,nano-Cu particles also showed good lubricity to the cold-rolled steel strips.Namely,the cold-rolled steel strips under the lubrication of the cold rolling emulsion containing nano-Cu particles had considerably decreased the after-rolling thickness and achieved excellent surface quality as well.Finally,the lubrication mechanism of nano-Cu particles in the emulsion for cold rolling of steel strips was discussed.展开更多
基金Project(61074099)supported by the National Natural Science Foundation of ChinaProject(LJRC013)supported by Cultivation Program for Leading Talent of Innovation Team in Colleges and Universities of Hebei Province,ChinaProject(B705)supported by Doctor Foundation of Yanshan University,China
文摘To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invariance principle was used to realize static decoupling between the speed and tension of reversible cold strip mill. Then, considering the influence caused by the time variation of steel coil radius and rotational inertia of the left and right coilers, as well as the uncertainties, a CC strategy that is composed of extended state observer(ESO) and global sliding mode control(GSMC) with backstepping adaptive was proposed,which further realized dynamic decoupling and coordination control for the speed and tension system. Theoretical analysis shows that the resulting closed-loop system is global bounded stable. Finally, the simulation was carried out on the speed and tension system of a 1422 mm reversible cold strip mill by using the actual data, and through the comparison of the other control strategies, validity of the proposed CC strategy was shown by the results.
基金supported by the National High-Tech Research and Development Program("863"Program) of China (No.2009AA03Z339)Important and Large Sci-Tech of Guangzhou Mechanical Engineering Research Institute Co.,Ltd. (No. 12300022)
文摘In this paper,nano-Cu particles with an average size of smaller than 20 nm were dispersed under ultrasonic agitation in emulsions for cold rolling of steel strips.The tribological properties of the cold rolling emulsion doped with nano-Cu particles were evaluated by using a four-ball machine,and the worn surfaces of the steel balls were checked by an optical microscope.A JC2000C1 wetting angle tester was also applied to study the variation in the emulsion's wetting performance when nano-Cu particles were incorporated.Furthermore,the lubricity of the emulsion doped with nano-Cu for steel strip cold rolling was evaluated on a four-high rolling mill for comparison with the emulsion without using nano-Cu particles.Test results indicated that nano-Cu particles as the additive used in cold rolling emulsion were able to improve the wetting property,friction-reducing,anti-wear,and extreme pressure performance of the base stock significantly.At the same time,nano-Cu particles also showed good lubricity to the cold-rolled steel strips.Namely,the cold-rolled steel strips under the lubrication of the cold rolling emulsion containing nano-Cu particles had considerably decreased the after-rolling thickness and achieved excellent surface quality as well.Finally,the lubrication mechanism of nano-Cu particles in the emulsion for cold rolling of steel strips was discussed.