为分析松花江流域水资源的演变规律,基于寒区水-热-氮素循环模型(the water and energy transfer processes and nitrogen cycle processes model in cold regions,WEP-N)和水资源评价方法,对径流发生突变的1998年前后(即1999—2018年和...为分析松花江流域水资源的演变规律,基于寒区水-热-氮素循环模型(the water and energy transfer processes and nitrogen cycle processes model in cold regions,WEP-N)和水资源评价方法,对径流发生突变的1998年前后(即1999—2018年和1956—1998年)进行比较,松花江流域年水资源总量减少217.0亿m^(3),减幅达到22.2%。其中,地表水资源量减少是水资源总量减少的主要组分,占水资源总量减少的比例为96.9%,不重复地下水资源减少量占3.1%。基于多因子归因分析方法分析可知,气候变化是松花江流域水资源减少的主要因素,对松花江流域全年水资源总量、地表水资源量、不重复地下水资源量减少的贡献率分别为81.6%、74.9%、286.6%,取用水的贡献率分别为18.4%、25.1%、-86.6%。从年内不同时期分析可知,非冻融期是全年水资源量减少的主要时期,占全年水资源总量减少的82.6%,冻融期占17.4%。和北方的海河流域、黄河流域相比,水资源减少幅度和主要影响因素各不相同,主要取决于气候变化和人类活动强度变化幅度的不同。与位于华北和西北的两大流域海河流域和黄河流域对比,气候变化对松花江流域水资源衰减的影响与海河流域相当,明显大于黄河流域,而人类活动对松花江流域水资源衰减的影响明显小于两大流域。展开更多
A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missi...A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.展开更多
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St...Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.展开更多
文摘为分析松花江流域水资源的演变规律,基于寒区水-热-氮素循环模型(the water and energy transfer processes and nitrogen cycle processes model in cold regions,WEP-N)和水资源评价方法,对径流发生突变的1998年前后(即1999—2018年和1956—1998年)进行比较,松花江流域年水资源总量减少217.0亿m^(3),减幅达到22.2%。其中,地表水资源量减少是水资源总量减少的主要组分,占水资源总量减少的比例为96.9%,不重复地下水资源减少量占3.1%。基于多因子归因分析方法分析可知,气候变化是松花江流域水资源减少的主要因素,对松花江流域全年水资源总量、地表水资源量、不重复地下水资源量减少的贡献率分别为81.6%、74.9%、286.6%,取用水的贡献率分别为18.4%、25.1%、-86.6%。从年内不同时期分析可知,非冻融期是全年水资源量减少的主要时期,占全年水资源总量减少的82.6%,冻融期占17.4%。和北方的海河流域、黄河流域相比,水资源减少幅度和主要影响因素各不相同,主要取决于气候变化和人类活动强度变化幅度的不同。与位于华北和西北的两大流域海河流域和黄河流域对比,气候变化对松花江流域水资源衰减的影响与海河流域相当,明显大于黄河流域,而人类活动对松花江流域水资源衰减的影响明显小于两大流域。
基金Project 2006G1662-00 supported by the Key Science and Technology Project of Heilongjiang Province
文摘A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.
基金Supported by project of China Geological Surrey(No.GZHL20110326)
文摘Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.