A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three ...A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three typical ecosystems (grassland, Mongolian pine plantation and poplar plantation) in southeastern Keerqin Sandy Lands of China and subjected to freeze-thaw treatment (-12℃ for 10 days, then r 20℃ for 10 days) or incubated at constant temperature (20℃ for 20 days). Concentrations of the soil NO3^--N, NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P (MBP) were determined on three occasions: at the start of the incubation, immediate post-thawing and at the 10th day post-thawing. The results showed that soil net nitrification and N mineralization rates at three sites were negatively affected by freeze-thaw treatment, and decreased by 50%-85% as compared to the control, of which the greatest decline occurred in the soil collected from poplar plantation. In contrast, the concentration of soil NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P were insignificantly influenced by freeze-thaw except that LPi and NH4^+-N showed a slight increase immediate post-thawing. The effects of freeze-thaw on soil N transformation were related to soil biological processes and the relatively constant available P was ascribed to severe soil aridity.展开更多
Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 y...Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 years and projected for the near future. The distr/bution patterns and development mechanisms of the permafrost and marshes have been examined both in theories and in field observations, in order to better understand the symbiosis of permafrost and marshes. The permafrost and marshes in the Da and Xiao Hinggan Mountains display discernible zonations in latitude and elevation. The marsh vegetation canopy, litter and peat soil have good thermal insulation properties for the underlying permafrost, resulting in a thermal offset of 3 ℃ to 4℃ and subsequently suppressing soil temperature. In addition, the much higher thermal conductivity of frozen and ice-rich peat in the active layer is conducive to the development or in favor of the protection of permafrost due to the semi-conductor properties of the soils overlying the permafrost. On the other hand, because permafrost is almost impervious, the osmosis of water in marsh soils can be effectively reduced, timely providing water supplies for helophytes growth or germination in spring. In the Da and Xiao Hinggan Mountains, the permafrost degradation has been accelerating due to the marked climate warming, ever increasing human activities, and the resultant eco-environmental changes. Since the permafrost and marsh environments are symbiotic and interdependent, they need to be managed or protected in a well-coordinated and integrated way.展开更多
Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured...Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured data of alpine steppe in Wudaoliang assessed the model performance in simulating soil freezing and thawing processes.Comparison of the simulated results by simultaneous heat and water(SHAW) model to the measured data showed that SHAW model performed satisfactorily.Based on analyzing the simulated and predicted results,two points were obtained:(1) freezing and thawing of the active layer proceeded both from the soil surface downward.Compared with the freezing process,the thawing process was slower.The freezing period persisted in the surface layer(4 cm depth) for about 5 months;(2) in the next 50 years,frozen period would be shorten about 20 days in the top 100 cm depth while the thawing would start earlier 40 days than present.Soil water storage in the 0-60 cm would decrease by 22% averagely,especially from June to August when the vegetation is at the dominating water consumed stage.Therefore,this kind of permafrost degradation as active layer freezing and thawing processes changes will reduce soil water content and thus influence those ecosystems above it.展开更多
The structure of concrete generally serves in multi-media environments; various environments act differently on concrete. The compound action of some severe environments will threaten the duration of concrete and decr...The structure of concrete generally serves in multi-media environments; various environments act differently on concrete. The compound action of some severe environments will threaten the duration of concrete and decrease the service life of a concrete structure if improperly handled. In this paper the microstructure of concrete is observed by using Scanned Electric Microscope (SEM) through contrasting experiments in media of acid, alkali and salt with that of freezing-thawing in the same medium environment. This study is to supply a certain basis for changing traditional thinking of mechanical design and to combine construction reliability design with durability of concrete design.展开更多
The solidification of a binary mixture causes allowed thermosolutal convection. Under certain conditions, the separation of its components gives rise to a preferential movement of migration of solutes. The quantity an...The solidification of a binary mixture causes allowed thermosolutal convection. Under certain conditions, the separation of its components gives rise to a preferential movement of migration of solutes. The quantity and the concentration of the obtained products depend on the mechanisms of sepa',ration which depend on different parameters and the applied boundary conditions. In this way, the freezing of H20-NaC1 mixture makes it possible to obtain a liquid phase which is charged in solute and is called brine and a solid phase which is composed of ice being able to become fresh water, and so it can works as a desalination process. In this paper, a series of experiments of seawater freezing on cold surface is carried out at the laboratory under different operating conditions. During these experiments, the role of each parameter (temperature of crystallization, duration of crystallizat on...) which is able to impact the final composition is focused on. After a preliminary series of experiment, the yield is: improved to reach rates of salt and make it possible to regard the water produced as drinkable according to the standards of WHO (World Health Organization).展开更多
Objective: The aim of the study was to observe and compare the effects of cryopreservation and thawing meth- ods on rat ovarian tissues. Methods: Twenty 5-6 weeks old SPF-SD female rats were randomly divided into two ...Objective: The aim of the study was to observe and compare the effects of cryopreservation and thawing meth- ods on rat ovarian tissues. Methods: Twenty 5-6 weeks old SPF-SD female rats were randomly divided into two groups, with ten rats in each group. Freshly isolated ovaries saved as a control (group 1: fresh ovaries) in formalin-fixed or vitrified immediately after dissection (group 2: vitrified ovaries). Ovaries in vitrified group were processed into thin slices then cryo- preserved, stored in liquid nitrogen for 21 days, rapidly thawed and grossly examined. All of the collected ovaries underwent hematoxylin and eosin-stained paraffin serial sections and observed the microscopic evaluation in vitrified ovaries. Results: Grossly the vitrified ovaries turned pale color and the size was same as before freeze. The vitrified ovarian tissue had normal anatomical structures of cortex and medulla under the microscope and had no difference with the fresh control ovarian tis- sue. The number and distribution of the follicles were similar with the fresh ovarian tissue, but had smaller size and the gap between oocyte and the surrounding granulosa cells was increased. Few ooctyes were in irregular appearance however the morphology of follicular cells did not give a different appearance as compared to the fresh control ovarian tissue. Conclusion: Cryopreservation of ovarian tissues by vitrification method has some detrimental effect on the morphology of follicles but does not induce negative impact on the number, density and survival of the primordial ovarian follicles. However the whole follicle anatomical structures also had no significant changes.展开更多
The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 ...The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles.展开更多
In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under differen...In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under different freezing temperatures,the authors carried out freeze-thaw cycle tests for 3 times and 20 times,respectively.With mercury intrusion porosimetry and granulometric analysis,from the micro-structure,the authors studied the law that freeze-thaw cycle times and frozen temperature effect on the variation of microscopic pore of loesslike soil.This result can provide theoretical basis for comprehensive treatment of problems in the construction of the project in seasonal frozen loess-like soil region.展开更多
Isoangustone A (1) is an isoprenylated flavonoid isolated from licorice. It has been reported to possess anti-microbial, anti-oxidative, anti-inflammatory, and anti-tumor activities. In order to increase its structu...Isoangustone A (1) is an isoprenylated flavonoid isolated from licorice. It has been reported to possess anti-microbial, anti-oxidative, anti-inflammatory, and anti-tumor activities. In order to increase its structural diversity, microbial transformation of 1 was conducted by Mucor hiemalis CGMCC 3.14114 to obtain three new compounds. By extensive NMR and MS spectroscopic analyses, their structures were identified as isoangustone A 7-O-glucoside (2), isoangustone A 7-O-glucoside-4'-O-sulfate (3), and isoangustone A 7,3 'di-O-glucoside (4), respectively. The major biotransformation reaction was glycosylation at C-7. Sulfation is rare for microbial transformation.展开更多
This paper develops a physical model describing the Yin-Yang balance in the tai-chi diagram via the melting and freezing processes taking place in a rotating device. First, a physical model is established for a meltin...This paper develops a physical model describing the Yin-Yang balance in the tai-chi diagram via the melting and freezing processes taking place in a rotating device. First, a physical model is established for a melting and freezing rotating device applied for transferring heat from a heat source to a heat sink. The device consists of two concentric cylinders with a phase change material being filled between them. During the melting process, heat is supplied from the heat source to the device, and the phase change material in the device melts. The melting process is equivalent to yang in the tai-chi diagram. During the freezing process, heat is discharged from the device to the heat sink, and the phase change material in the device freezes. The freezing process is equivalent to yin in the tai- chi diagram. The moving phase boundaries of the melting and freezing processes form two curves, representing the interface curves between the yin and yang in the tai-chi diagram. The variation of the thermal strength in the heat source and heat sink represents the variation of the yin -yang balance in the tai-chi diagram.展开更多
CDC48 is a highly conserved protein in eukaryotes and belongs to the AAA (ATPase associated with a variety of cellular activities) superfamily. It can interact with many different cofactors and form protein complexe...CDC48 is a highly conserved protein in eukaryotes and belongs to the AAA (ATPase associated with a variety of cellular activities) superfamily. It can interact with many different cofactors and form protein complexes that play important roles in various cellular processes. According to the Physcomitrella patens database, one member of the ATPases, the cell cycle gene PpCDC4811, was cloned. PpCDC48II contains two typical ATPase modules and is highly homologous to AtCDC48A. PpCDC4811 was up-regulated in mRNA levels after incubation at 0~C for 36 and 72 h. To further elucidate protein function, we disrupted the PpCDC4811 gene by transforming P. patens with the corresponding linear genomic sequences. When treated to the same freezing stress, it was found that PpCDC4811 knockout plants were less resistant to freezing treatment than wild type after acclimation. This suggested that PpCDC481I was an essential gene for low-temperature-induced freezing tolerance in P. patens cells.展开更多
基金the grants from the National Natural Science Foundation of China (No. 30471377)the National Key Basic Research Program of China (No. 2007CB106803)the National Key Technologies R & D Program of China (No. 2006BAD26B0201-1)
文摘A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three typical ecosystems (grassland, Mongolian pine plantation and poplar plantation) in southeastern Keerqin Sandy Lands of China and subjected to freeze-thaw treatment (-12℃ for 10 days, then r 20℃ for 10 days) or incubated at constant temperature (20℃ for 20 days). Concentrations of the soil NO3^--N, NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P (MBP) were determined on three occasions: at the start of the incubation, immediate post-thawing and at the 10th day post-thawing. The results showed that soil net nitrification and N mineralization rates at three sites were negatively affected by freeze-thaw treatment, and decreased by 50%-85% as compared to the control, of which the greatest decline occurred in the soil collected from poplar plantation. In contrast, the concentration of soil NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P were insignificantly influenced by freeze-thaw except that LPi and NH4^+-N showed a slight increase immediate post-thawing. The effects of freeze-thaw on soil N transformation were related to soil biological processes and the relatively constant available P was ascribed to severe soil aridity.
基金Under the auspices of National Natural Science Foundation of China (No. 40701031,40225001,J0630966)3rd-term Knowledge Innovation Program of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences (No. O650445)
文摘Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 years and projected for the near future. The distr/bution patterns and development mechanisms of the permafrost and marshes have been examined both in theories and in field observations, in order to better understand the symbiosis of permafrost and marshes. The permafrost and marshes in the Da and Xiao Hinggan Mountains display discernible zonations in latitude and elevation. The marsh vegetation canopy, litter and peat soil have good thermal insulation properties for the underlying permafrost, resulting in a thermal offset of 3 ℃ to 4℃ and subsequently suppressing soil temperature. In addition, the much higher thermal conductivity of frozen and ice-rich peat in the active layer is conducive to the development or in favor of the protection of permafrost due to the semi-conductor properties of the soils overlying the permafrost. On the other hand, because permafrost is almost impervious, the osmosis of water in marsh soils can be effectively reduced, timely providing water supplies for helophytes growth or germination in spring. In the Da and Xiao Hinggan Mountains, the permafrost degradation has been accelerating due to the marked climate warming, ever increasing human activities, and the resultant eco-environmental changes. Since the permafrost and marsh environments are symbiotic and interdependent, they need to be managed or protected in a well-coordinated and integrated way.
基金supported by the National Basic Research Program of China(Grant No.2005CB422005)the National Basic S&T Project of China(Grant No.2006FY110200)China Postdoctoral Science Foundation(Grant No.20090460506)
文摘Permafrost degradation is prevalent on the Qinghai-Tibet Plateau.This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems.In this paper,using the measured data of alpine steppe in Wudaoliang assessed the model performance in simulating soil freezing and thawing processes.Comparison of the simulated results by simultaneous heat and water(SHAW) model to the measured data showed that SHAW model performed satisfactorily.Based on analyzing the simulated and predicted results,two points were obtained:(1) freezing and thawing of the active layer proceeded both from the soil surface downward.Compared with the freezing process,the thawing process was slower.The freezing period persisted in the surface layer(4 cm depth) for about 5 months;(2) in the next 50 years,frozen period would be shorten about 20 days in the top 100 cm depth while the thawing would start earlier 40 days than present.Soil water storage in the 0-60 cm would decrease by 22% averagely,especially from June to August when the vegetation is at the dominating water consumed stage.Therefore,this kind of permafrost degradation as active layer freezing and thawing processes changes will reduce soil water content and thus influence those ecosystems above it.
文摘The structure of concrete generally serves in multi-media environments; various environments act differently on concrete. The compound action of some severe environments will threaten the duration of concrete and decrease the service life of a concrete structure if improperly handled. In this paper the microstructure of concrete is observed by using Scanned Electric Microscope (SEM) through contrasting experiments in media of acid, alkali and salt with that of freezing-thawing in the same medium environment. This study is to supply a certain basis for changing traditional thinking of mechanical design and to combine construction reliability design with durability of concrete design.
文摘The solidification of a binary mixture causes allowed thermosolutal convection. Under certain conditions, the separation of its components gives rise to a preferential movement of migration of solutes. The quantity and the concentration of the obtained products depend on the mechanisms of sepa',ration which depend on different parameters and the applied boundary conditions. In this way, the freezing of H20-NaC1 mixture makes it possible to obtain a liquid phase which is charged in solute and is called brine and a solid phase which is composed of ice being able to become fresh water, and so it can works as a desalination process. In this paper, a series of experiments of seawater freezing on cold surface is carried out at the laboratory under different operating conditions. During these experiments, the role of each parameter (temperature of crystallization, duration of crystallizat on...) which is able to impact the final composition is focused on. After a preliminary series of experiment, the yield is: improved to reach rates of salt and make it possible to regard the water produced as drinkable according to the standards of WHO (World Health Organization).
文摘Objective: The aim of the study was to observe and compare the effects of cryopreservation and thawing meth- ods on rat ovarian tissues. Methods: Twenty 5-6 weeks old SPF-SD female rats were randomly divided into two groups, with ten rats in each group. Freshly isolated ovaries saved as a control (group 1: fresh ovaries) in formalin-fixed or vitrified immediately after dissection (group 2: vitrified ovaries). Ovaries in vitrified group were processed into thin slices then cryo- preserved, stored in liquid nitrogen for 21 days, rapidly thawed and grossly examined. All of the collected ovaries underwent hematoxylin and eosin-stained paraffin serial sections and observed the microscopic evaluation in vitrified ovaries. Results: Grossly the vitrified ovaries turned pale color and the size was same as before freeze. The vitrified ovarian tissue had normal anatomical structures of cortex and medulla under the microscope and had no difference with the fresh control ovarian tis- sue. The number and distribution of the follicles were similar with the fresh ovarian tissue, but had smaller size and the gap between oocyte and the surrounding granulosa cells was increased. Few ooctyes were in irregular appearance however the morphology of follicular cells did not give a different appearance as compared to the fresh control ovarian tissue. Conclusion: Cryopreservation of ovarian tissues by vitrification method has some detrimental effect on the morphology of follicles but does not induce negative impact on the number, density and survival of the primordial ovarian follicles. However the whole follicle anatomical structures also had no significant changes.
基金Project(IRT0518) supported by the Program of Innovative Team of the Ministry of Education of China
文摘The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles.
文摘In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under different freezing temperatures,the authors carried out freeze-thaw cycle tests for 3 times and 20 times,respectively.With mercury intrusion porosimetry and granulometric analysis,from the micro-structure,the authors studied the law that freeze-thaw cycle times and frozen temperature effect on the variation of microscopic pore of loesslike soil.This result can provide theoretical basis for comprehensive treatment of problems in the construction of the project in seasonal frozen loess-like soil region.
基金National Natural Science Foundation of China(Grant No.81173644 and 81222054)the Program for New Century Excellent Talents in University from Chinese Ministry of Education(Grant No.NCET-11-0019)
文摘Isoangustone A (1) is an isoprenylated flavonoid isolated from licorice. It has been reported to possess anti-microbial, anti-oxidative, anti-inflammatory, and anti-tumor activities. In order to increase its structural diversity, microbial transformation of 1 was conducted by Mucor hiemalis CGMCC 3.14114 to obtain three new compounds. By extensive NMR and MS spectroscopic analyses, their structures were identified as isoangustone A 7-O-glucoside (2), isoangustone A 7-O-glucoside-4'-O-sulfate (3), and isoangustone A 7,3 'di-O-glucoside (4), respectively. The major biotransformation reaction was glycosylation at C-7. Sulfation is rare for microbial transformation.
基金NtwlSciences and engineerin Research Council of Canadaunder Grant No. OGP(X)07929.
文摘This paper develops a physical model describing the Yin-Yang balance in the tai-chi diagram via the melting and freezing processes taking place in a rotating device. First, a physical model is established for a melting and freezing rotating device applied for transferring heat from a heat source to a heat sink. The device consists of two concentric cylinders with a phase change material being filled between them. During the melting process, heat is supplied from the heat source to the device, and the phase change material in the device melts. The melting process is equivalent to yang in the tai-chi diagram. During the freezing process, heat is discharged from the device to the heat sink, and the phase change material in the device freezes. The freezing process is equivalent to yin in the tai- chi diagram. The moving phase boundaries of the melting and freezing processes form two curves, representing the interface curves between the yin and yang in the tai-chi diagram. The variation of the thermal strength in the heat source and heat sink represents the variation of the yin -yang balance in the tai-chi diagram.
基金supported by the National Natural Science Foundation of China (Grant No. 30700404)
文摘CDC48 is a highly conserved protein in eukaryotes and belongs to the AAA (ATPase associated with a variety of cellular activities) superfamily. It can interact with many different cofactors and form protein complexes that play important roles in various cellular processes. According to the Physcomitrella patens database, one member of the ATPases, the cell cycle gene PpCDC4811, was cloned. PpCDC48II contains two typical ATPase modules and is highly homologous to AtCDC48A. PpCDC4811 was up-regulated in mRNA levels after incubation at 0~C for 36 and 72 h. To further elucidate protein function, we disrupted the PpCDC4811 gene by transforming P. patens with the corresponding linear genomic sequences. When treated to the same freezing stress, it was found that PpCDC4811 knockout plants were less resistant to freezing treatment than wild type after acclimation. This suggested that PpCDC481I was an essential gene for low-temperature-induced freezing tolerance in P. patens cells.