薄层底水油藏确定油水界面位置困难,射孔完成法建立底水隔板存在技术限制,而冻胶泡沫兼具冻胶和泡沫的双重作用,选择性好、封堵能力强,控制该类油藏底水锥进问题具有优势。室内实验通过黏度法和改进的Ross-Miles方法对冻胶泡沫体系进行...薄层底水油藏确定油水界面位置困难,射孔完成法建立底水隔板存在技术限制,而冻胶泡沫兼具冻胶和泡沫的双重作用,选择性好、封堵能力强,控制该类油藏底水锥进问题具有优势。室内实验通过黏度法和改进的Ross-Miles方法对冻胶泡沫体系进行了优选,得到了体系的优化配方为:0.2%聚合物LA100+0.4%有机铬交联剂FH-7+0.25%表面活性剂SDS+N2。体系性能评价结果表明,随反应时间延长(0率24 h),体系黏度由11.6逐渐增至200.0 m Pa·s,泡沫综合值由2838.0增至11899.0 m L·min。随着冻胶逐渐成冻,冻胶泡沫稳定性逐渐增强。体系的注入压力高,阻力系数超过6.0。封堵能力强,封堵率超过93.8%;选择性优于冻胶,可智能识别高渗通道。玻璃填砂可视化物理模拟表明,在生产井的近井地带,冻胶泡沫优先进入水锥入侵通道和底水层,形成稳定的底水隔板,扩大底水波及体积,采收率增值为32.6%。展开更多
文摘薄层底水油藏确定油水界面位置困难,射孔完成法建立底水隔板存在技术限制,而冻胶泡沫兼具冻胶和泡沫的双重作用,选择性好、封堵能力强,控制该类油藏底水锥进问题具有优势。室内实验通过黏度法和改进的Ross-Miles方法对冻胶泡沫体系进行了优选,得到了体系的优化配方为:0.2%聚合物LA100+0.4%有机铬交联剂FH-7+0.25%表面活性剂SDS+N2。体系性能评价结果表明,随反应时间延长(0率24 h),体系黏度由11.6逐渐增至200.0 m Pa·s,泡沫综合值由2838.0增至11899.0 m L·min。随着冻胶逐渐成冻,冻胶泡沫稳定性逐渐增强。体系的注入压力高,阻力系数超过6.0。封堵能力强,封堵率超过93.8%;选择性优于冻胶,可智能识别高渗通道。玻璃填砂可视化物理模拟表明,在生产井的近井地带,冻胶泡沫优先进入水锥入侵通道和底水层,形成稳定的底水隔板,扩大底水波及体积,采收率增值为32.6%。