期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
蒸压粉煤灰砖冻融后抗压强度提高的原因探讨——兼议国标《砌墙砖试验方法》对非烧结砖抗冻性能试验方法的规定 被引量:6
1
作者 李庆繁 《墙材革新与建筑节能》 2009年第3期39-42,共4页
按照GB/T2542-2003《砌墙砖试验方法》标准中规定的冻融试验方法,对蒸压粉煤灰砖进行抗冻性能试验及计算,常会出现制品冻融后抗压强度反而提高的反常现象。分析认为:《砌墙砖试验方法》标准规定的冻融试验方法不适用于蒸压粉煤灰砖,并... 按照GB/T2542-2003《砌墙砖试验方法》标准中规定的冻融试验方法,对蒸压粉煤灰砖进行抗冻性能试验及计算,常会出现制品冻融后抗压强度反而提高的反常现象。分析认为:《砌墙砖试验方法》标准规定的冻融试验方法不适用于蒸压粉煤灰砖,并就蒸压粉煤灰砖抗冻性能的试验方法提出建议。 展开更多
关键词 蒸压粉煤灰砖 冻融循环强度 抗冻性能 反常现象 试验方法
下载PDF
玄武岩纤维对磷石膏基复合材料耐久性能的影响 被引量:1
2
作者 黄莹蓥 孔德文 +2 位作者 崔庚寅 谢浪 王玲玲 《硅酸盐通报》 CAS 北大核心 2023年第7期2521-2531,共11页
通过在磷石膏基复合材料(PGC)中掺入不同直径、长度和掺量的玄武岩纤维(BF),探究BF对PGC耐久性能的影响。结果表明,BF的掺入能显著降低PGC的溶蚀率。随着BF掺量的增加,试样干湿循环和冻融循环强度整体提高,且与绝干强度变化机制类似,其... 通过在磷石膏基复合材料(PGC)中掺入不同直径、长度和掺量的玄武岩纤维(BF),探究BF对PGC耐久性能的影响。结果表明,BF的掺入能显著降低PGC的溶蚀率。随着BF掺量的增加,试样干湿循环和冻融循环强度整体提高,且与绝干强度变化机制类似,其中干湿循环的抗压和抗折强度较空白组分别提高了约22.3%和100.3%,冻融循环的抗压和抗折强度则分别提高了近46.5%和124.0%。同时,PGC的干湿循环与冻融循环强度系数整体随着BF掺量的增多而增大,干湿循环抗压和抗折强度系数分别上升至0.95和0.92,冻融循环抗压和抗折强度系数分别增长至0.71和0.62,这表明PGC耐久性能得到显著改善。此外,BF直径对PGC耐久性能的影响并不显著。本研究结果可以为纤维改性石膏基复合材料的耐久性能研究提供一定的参考。 展开更多
关键词 玄武岩纤维 磷石膏基复合材料 耐久性能 溶蚀率 干湿循环强度 冻融循环强度
下载PDF
Evolution model of concrete failure surface under coupling effect of seawater freeze-thaw and erosion 被引量:1
3
作者 张峰 李树忱 +1 位作者 叶见曙 李守凯 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期206-209,共4页
In order to effectively assess the mechanical properties of concrete with freeze-thaw and seawater erosion, tests about basic mechanical properties of concrete after freeze-thaw and seawater erosion are conducted base... In order to effectively assess the mechanical properties of concrete with freeze-thaw and seawater erosion, tests about basic mechanical properties of concrete after freeze-thaw and seawater erosion are conducted based on the large-scale static and dynamic stiffness servo test set. 50, 100, 200 and 300 cycles of freeze-thaw cycling are made on normal concrete, and the artificial seawater is produced. The reasonable wet and dry accelerate system is selected. 10, 20, 30, 40, 50 and 60 cycles of wet and dry cycling are made to concrete after freeze-thaw cycling. The degeneration law of the concrete elastic modulus and compressive strength is studied. The Ottosen tri-axial strength criterion considering cycles of freeze-thaw and wet and dry cycling is deduced based on uniaxial mechanical properties of concrete and damage theory. Experimental results show that with the increase in the number of wet and dry cycles and freeze-thaw cycles, the concrete axial compressive strength and the elastic modulus decline gradually. Tensile and compressive meridians of concrete shrink gradually. The research can be referenced for anti-crack design of actual structures eroded by seawater at cold regions. 展开更多
关键词 CONCRETE FREEZE-THAW wet and dry cycles EROSION Ottosen strength criterion
下载PDF
Mechanical and electrical properties of coarse-grained soilaffected by cyclic freeze-thaw in high cold regions 被引量:11
4
作者 QU Yong-long NI Wan-kui +3 位作者 NIU Fu-jun MU Yan-hu CHEN Guo-liang LUO Jing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期853-866,共14页
To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water content... To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity. 展开更多
关键词 coarse-grained soil freeze-thaw cycle unconfined compressive strength electrical resistivity electrical resistivity model
下载PDF
Effect of Freeze-Thaw Cycles on Mechanical Properties and Permeability of Red Sandstone under Triaxial Compression 被引量:16
5
作者 YU Jin CHEN Xu +2 位作者 LI Hong ZHOU Jia-wen CAI Yan-yan 《Journal of Mountain Science》 SCIE CSCD 2015年第1期218-231,共14页
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of... Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour. 展开更多
关键词 Freeze-thaw cycles Red sandstone Triaxial compression PERMEABILITY Mechanicalproperties
下载PDF
Degradation of bond between steel bar and freeze-thaw concrete after electrochemical chloride extraction 被引量:6
6
作者 郭育霞 贡金鑫 《Journal of Central South University》 SCIE EI CAS 2010年第2期388-393,共6页
The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 ... The effect of electrochemical chloride extraction (ECE) on bond strength between steel bar and freeze-thaw concrete contaminated by chloride was experimentally investigated for beam specimens with dimensions of 100 mm × 100 mm × 400 ram. During the experiment, 3% NaC1 (vs mass of cement, mass fraction) was mixed into concrete to simulate chloride contamination, and the specimens experienced 0, 25, 50, 75 freeze-thaw cycles before ECE. In the process of ECE, different current densities and durations were adopted. It is indicated that the bond strength between reinforcement and concrete decreases with the increase of freeze-thaw cycles; the more the current and the electric quantity of ECE are, the more the loss of bond strength is; and the largest loss is up to 58.7%. So, it is important to choose proper parameters of ECE for the reinforced concrete structures contaminated by chloride and subjected to freeze-thaw cycles. 展开更多
关键词 CONCRETE bond strength DEGRADATION electrochemical chloride extraction freeze-thaw cycles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部