The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and free...The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and freeze-thaw stability of different flours incorporated with 0, 0.5%, 1%, 2%, 3% and 5% of MG were investigated. Pasting temperature (60 ℃-87 ℃) of the pastes significantly decreased with increasing of MG content for wheat and rice flours, but had no significant effect for waxy rice flour. Incorporation of MG into all flours significantly elevated the peak viscosity by about 0.9-2.6 folds when compared to non-MG samples. Hot paste viscosity, breakdown and final viscosity for all flour mixtures significantly increased with increasing of MG which ranged from 81-427, 37-559 and 152-463 RVU, respectively. Freeze-thaw stability measurement demonstrated that higher level of MG in wheat and rice gel mixtures could decrease syneresis. However, MG had no effect on syneresis of waxy rice gel. Presence of MG in flours alters the pasting properties and syneresis effect. It is suggested that higher viscosity and lower syneresis of gels could be modified by MG.展开更多
Isolated finger millet (Eleucine coracana) starch was subjected to different modifications (hydrothermal, acidic and enzymatic) and characterized in terms of yield, moisture, protein, ash, bulk density, swelling p...Isolated finger millet (Eleucine coracana) starch was subjected to different modifications (hydrothermal, acidic and enzymatic) and characterized in terms of yield, moisture, protein, ash, bulk density, swelling power, solubility, sediment volume, colour, gel consistency, water binding capacity (WBC), pasting properties, freeze thaw stability and paste clarity, and compared with native starch. Moisture content ranged from 4%-5%. Protein and ash content were lowest in case of acid modified starch (AMS). Hydrothermally modified starches (HTMS) showed maximum water binding, peak viscosity and syneresis. Swelling power was decreased for all modifications. Solubility and color (a and b values) decreased for AMS and EMS. However, L values increased with all modifications. EMS showed maximum bulk density, swelling power, solubility, and sediment volume and gel consistency. Paste clarity decreased with storage period and found maximum for EMS.展开更多
Soil aggregate stability,an important index of the physical characteristics of a soil,can provide a good indication of a soil’s erodibility,and deserves special consideration in regions with cold climate.The objectiv...Soil aggregate stability,an important index of the physical characteristics of a soil,can provide a good indication of a soil’s erodibility,and deserves special consideration in regions with cold climate.The objective of this study was to study the effect of freeze-thaw on soil water-stable aggregates in the black soil region of Northeast China.Samples of a typical black soil in the region were collected to measure water-stable aggregates after freeze-thaw under different conditions(i.e.,initial moisture contents,freezethaw cycles and freezing temperatures)by wet-sieving into eight particle size groups(>10,10–6,6–5,5–3,3–2,2–1,1–0.5,and0.5–0.25 mm).Freeze-thaw had the most effect on aggregate stability when the samples had an initial moisture content of 400 g kg-1.The water-stable aggregates of the four larger particle size groups(>5,5–3,3–2,and 2–1 mm)reached a peak stability value,but those of the two smaller particle size groups(1–0.5 and 0.5–0.25 mm)reached a minimum value when the soil moisture content was 400 g kg-1.Water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased with the increase of freeze-thaw cycles.As temperatures fell,the water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased.展开更多
文摘The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and freeze-thaw stability of different flours incorporated with 0, 0.5%, 1%, 2%, 3% and 5% of MG were investigated. Pasting temperature (60 ℃-87 ℃) of the pastes significantly decreased with increasing of MG content for wheat and rice flours, but had no significant effect for waxy rice flour. Incorporation of MG into all flours significantly elevated the peak viscosity by about 0.9-2.6 folds when compared to non-MG samples. Hot paste viscosity, breakdown and final viscosity for all flour mixtures significantly increased with increasing of MG which ranged from 81-427, 37-559 and 152-463 RVU, respectively. Freeze-thaw stability measurement demonstrated that higher level of MG in wheat and rice gel mixtures could decrease syneresis. However, MG had no effect on syneresis of waxy rice gel. Presence of MG in flours alters the pasting properties and syneresis effect. It is suggested that higher viscosity and lower syneresis of gels could be modified by MG.
文摘Isolated finger millet (Eleucine coracana) starch was subjected to different modifications (hydrothermal, acidic and enzymatic) and characterized in terms of yield, moisture, protein, ash, bulk density, swelling power, solubility, sediment volume, colour, gel consistency, water binding capacity (WBC), pasting properties, freeze thaw stability and paste clarity, and compared with native starch. Moisture content ranged from 4%-5%. Protein and ash content were lowest in case of acid modified starch (AMS). Hydrothermally modified starches (HTMS) showed maximum water binding, peak viscosity and syneresis. Swelling power was decreased for all modifications. Solubility and color (a and b values) decreased for AMS and EMS. However, L values increased with all modifications. EMS showed maximum bulk density, swelling power, solubility, and sediment volume and gel consistency. Paste clarity decreased with storage period and found maximum for EMS.
基金Supported by the National Natural Science Foundation of China(Nos.41071183 and 40601054)
文摘Soil aggregate stability,an important index of the physical characteristics of a soil,can provide a good indication of a soil’s erodibility,and deserves special consideration in regions with cold climate.The objective of this study was to study the effect of freeze-thaw on soil water-stable aggregates in the black soil region of Northeast China.Samples of a typical black soil in the region were collected to measure water-stable aggregates after freeze-thaw under different conditions(i.e.,initial moisture contents,freezethaw cycles and freezing temperatures)by wet-sieving into eight particle size groups(>10,10–6,6–5,5–3,3–2,2–1,1–0.5,and0.5–0.25 mm).Freeze-thaw had the most effect on aggregate stability when the samples had an initial moisture content of 400 g kg-1.The water-stable aggregates of the four larger particle size groups(>5,5–3,3–2,and 2–1 mm)reached a peak stability value,but those of the two smaller particle size groups(1–0.5 and 0.5–0.25 mm)reached a minimum value when the soil moisture content was 400 g kg-1.Water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased with the increase of freeze-thaw cycles.As temperatures fell,the water-stable aggregates of the four larger particle size groups decreased while those of the two smaller particle size groups increased.