期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
电解铝液在线净化除气系统的应用
1
作者 白侠飞 王雷 《设备管理与维修》 2009年第4期38-39,共2页
介绍电解铝厂电解铝液铸造过程中在线净化除气系统的原理、几种在线净化除气的方法,以及电解铝液铸造过程中在线净化除气系统的开发应用。
关键词 电解铝液 在线净化除气系统 应用
下载PDF
阻流体结构及尺寸对铝合金熔体净化除气效果的影响 被引量:4
2
作者 孙益民 郭凯 +1 位作者 冯乐 边秀房 《特种铸造及有色合金》 CAS CSCD 北大核心 2013年第11期1003-1006,共4页
用自行研制的旋转喷吹铝合金熔体净化除气设备,采用数码相机高速连拍技术,着重研究了阻流体的结构、尺寸及位置变化对精炼气泡的大小、数量及分布的影响。结果表明,阻流体的结构以长方体为最佳,容器内直径、阻流体宽度与阻流体位置(阻... 用自行研制的旋转喷吹铝合金熔体净化除气设备,采用数码相机高速连拍技术,着重研究了阻流体的结构、尺寸及位置变化对精炼气泡的大小、数量及分布的影响。结果表明,阻流体的结构以长方体为最佳,容器内直径、阻流体宽度与阻流体位置(阻流体与旋转杆之间的距离)之间的最佳比例关系为6.0∶1.0∶0.7。依据模拟试验给出的最优化方案制作阻流体,采用自制的旋转喷吹精炼除气机对ZL101铝合金熔体进行净化除气处理,试验结果显示净化除气效果显著。 展开更多
关键词 旋转喷吹 阻流体 最佳比例 净化除气
原文传递
消除铝合金压铸件气孔缺陷的工艺改进 被引量:1
3
作者 金柱 陈娟 +1 位作者 钱运亮 陈支平 《铸造工程》 2023年第1期15-20,共6页
针对铝合金压铸件气孔属于内部缺陷且不容易被观察和识别,尤其是密集针孔型气孔缺陷,X光探伤也不能识别检测出来的情况,在压铸成型金属填充理论的基础上对其形成进行分析和控制;通过双通道高真空技术、净化除气技术、喷涂工艺优化、浇... 针对铝合金压铸件气孔属于内部缺陷且不容易被观察和识别,尤其是密集针孔型气孔缺陷,X光探伤也不能识别检测出来的情况,在压铸成型金属填充理论的基础上对其形成进行分析和控制;通过双通道高真空技术、净化除气技术、喷涂工艺优化、浇注溢流系统优化、压铸工艺参数调整等技术的研究与应用来解决压铸件气孔缺陷;经过批量生产后,证明这些改善技术效果显著。 展开更多
关键词 铝合金 压铸件 净化除气 高真空
下载PDF
铸造镁合金旋转喷吹除气的试验研究 被引量:13
4
作者 胡中潮 张二林 曾松岩 《特种铸造及有色合金》 CAS CSCD 北大核心 2006年第3期139-141,共3页
研究了旋转喷吹技术在AZ91镁合金熔体除气净化处理上的应用。采用减压凝固法考察了旋转喷吹的除气净化工艺的净化效果,确定了最佳的除气时间。利用金相显微镜观察了除气前后合金的微观组织。对除气前后的合金,进行了金属型和低压砂型铸... 研究了旋转喷吹技术在AZ91镁合金熔体除气净化处理上的应用。采用减压凝固法考察了旋转喷吹的除气净化工艺的净化效果,确定了最佳的除气时间。利用金相显微镜观察了除气前后合金的微观组织。对除气前后的合金,进行了金属型和低压砂型铸造试验浇注,并对其力学性能进行了测试和比较。研究结果表明,经过30min旋转喷吹除气处理后,能快速显著地降低镁合金中的含气量,AZ91合金金属型和低压砂型试样的力学性能都明显地得到提高,特别是合金的伸长率得到大幅度的提高。 展开更多
关键词 镁合金 除气净化 旋转喷吹 力学性能
下载PDF
旋转喷吹除气装置原理及两种除气装置在应用中的对比
5
作者 郝志刚 郑力 +2 位作者 吴晓锋 赵涛 才智 《冶金标准化与质量》 2011年第3期56-58,共3页
为了降低铝合金熔体中氢含量,提高金属纯洁度,从而提高铝合金铸锭冶金质量,我单位购置了国内外两种除气净化装置,通过合理使用,达到了满意的除气效果,保证了铸锭的,台金质量。本文研究了在线除气装置的除气净化原理,从多个方面... 为了降低铝合金熔体中氢含量,提高金属纯洁度,从而提高铝合金铸锭冶金质量,我单位购置了国内外两种除气净化装置,通过合理使用,达到了满意的除气效果,保证了铸锭的,台金质量。本文研究了在线除气装置的除气净化原理,从多个方面对比了两种装置的优缺点。 展开更多
关键词 除气净化 氢含量 搅拌
下载PDF
Research and development on mechanism of removal of indoor volatile organic compounds by plants
6
作者 LI Fangwei CUI Long +2 位作者 CHENG Yan XUE Yonggang HUANG Yu 《地球环境学报》 CSCD 2024年第4期583-595,共13页
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha... Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2)and H2O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2)are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2)and H2O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research. 展开更多
关键词 PLANTS VOCS removal mechanism indoor air purification MICROORGANISM
下载PDF
Multi-pollutants simultaneous removal from flue gas
7
作者 Gao Xiang Wu Zuliang Luo Zhongyang Ni Mingjiang Cen Kefa 《Engineering Sciences》 EI 2010年第1期27-31,共5页
The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The se... The multi-stages humidifier semi-dry flue gas cleaning technology, the CRS plasma flue gas cleaning technology and oxidative additive flue gas cleaning technology were investigated for multi-pollutants removal. The semi-dry flue gas cleaning technology using multi-stages humidifier and additive can improve oxidation and absorption, and it can achieve high multi-pollutants removal efficiency. The CRS discharge can produce many OH radicals that promote NO oxidation. Combining NaOH absorption can achieve high deSO2 and deNO, efficiencies. It is fit for the reconstruction of primary wet flue gas desulfurization (WFGD). In addition, using NaClO2 as additive in the absorbent of WFGD can obtain very high removal efficiency of SO2 and NOx. 展开更多
关键词 simultaneous removal SEMI-DRY PLASMA ADDITIVE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部