In this work, the authors introduce the concept of(p, q)-quasi-contraction mapping in a cone metric space. We prove the existence and uniqueness of a fixed point for a(p, q)-quasi-contraction mapping in a complete con...In this work, the authors introduce the concept of(p, q)-quasi-contraction mapping in a cone metric space. We prove the existence and uniqueness of a fixed point for a(p, q)-quasi-contraction mapping in a complete cone metric space. The results of this paper generalize and unify further fixed point theorems for quasi-contraction, convex contraction mappings and two-sided convex contraction of order 2.展开更多
文摘In this work, the authors introduce the concept of(p, q)-quasi-contraction mapping in a cone metric space. We prove the existence and uniqueness of a fixed point for a(p, q)-quasi-contraction mapping in a complete cone metric space. The results of this paper generalize and unify further fixed point theorems for quasi-contraction, convex contraction mappings and two-sided convex contraction of order 2.