Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms ...Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms of the two cold waves.The main results are as follows:(1)An anticlockwise turning of the transverse trough was observed in both cold waves.However,a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021.No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia.(2)The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ.In the downstream region,the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards.This in turn caused the intensification and southward expansion of the Siberian high.(3)Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking.Prior to the occurrence of the two cold waves,the energy of the low-frequency stationary wave originating from near 0°E(or even to the west)propagated eastwards,which helped the Ural ridge intensify and maintain.Meanwhile,it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough,providing a favorable condition for the southward outbreak of cold air.展开更多
A high stabilized low dropout(LDO) voltage regulator fabricated for GPS radio frequency(RF) chip in SMIC 0.18μm CMOS technology is presented.The LDO mainly consists of bandgap reference,error amplifier,resistive feed...A high stabilized low dropout(LDO) voltage regulator fabricated for GPS radio frequency(RF) chip in SMIC 0.18μm CMOS technology is presented.The LDO mainly consists of bandgap reference,error amplifier,resistive feedback network and AC current path.A fast current path is added to improve the performance of LDO's transient response.Equivalent series resistance(ESR)compensation and internal Miller compensation are used to constitute the frequency compensation.The measurement results of the transient response of the output voltage show that it can recover within 2μs with less than 120 mV ripple when the load current is changed from 0 to 100 mA.The total quiescent current of LDO and bandgap reference(without load) is 260 μA.展开更多
A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a ...A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a method for detection and quantification of the meshing characteristics of the harmonic drive gear based on computer vision. First, an experimental set-up that integrates a high speed camera system with a lighting system is developed, and the image processing is adopted to extract and polish the tooth profiles of the meshed teeth pairs in each acquired video sequence. Next, a physical-mathematical model is established to determine the relative positions of the selected tooth pair in the process of the gear engagement, and the combined standard uncertainty is utilized to evaluate the accuracy of the calculated kinematics parameters. Last, the kinematics analysis of the gear engagement under the ultra-low speed condition is performed with our method and previous method, and the influence of the input rotational speed on the results is examined. The results validate the effectiveness of our method, and indicate that the conventional method is not available in the future friction analysis. It is also shown that the engaging-in phase is approximately a uniform motion process, the engaging-out phase is a variable motion process, and these characteristics remain unchanged with the variation of the input rotational speed. Our method affords the ability to understand the frictional mechanism on the meshed contact surfaces of the harmonic drive gear, and also allows for the dynamic monitoring of the meshing properties.展开更多
基金funded by a National Key Research and De-velopment Program Project[grant number 2018YFC1505601]National Natural Science Foundation of China[grant number 41975072]。
文摘Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms of the two cold waves.The main results are as follows:(1)An anticlockwise turning of the transverse trough was observed in both cold waves.However,a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021.No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia.(2)The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ.In the downstream region,the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards.This in turn caused the intensification and southward expansion of the Siberian high.(3)Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking.Prior to the occurrence of the two cold waves,the energy of the low-frequency stationary wave originating from near 0°E(or even to the west)propagated eastwards,which helped the Ural ridge intensify and maintain.Meanwhile,it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough,providing a favorable condition for the southward outbreak of cold air.
基金Supported by the Communication Systems Project of Jiangsu Department(No.JHB04010)
文摘A high stabilized low dropout(LDO) voltage regulator fabricated for GPS radio frequency(RF) chip in SMIC 0.18μm CMOS technology is presented.The LDO mainly consists of bandgap reference,error amplifier,resistive feedback network and AC current path.A fast current path is added to improve the performance of LDO's transient response.Equivalent series resistance(ESR)compensation and internal Miller compensation are used to constitute the frequency compensation.The measurement results of the transient response of the output voltage show that it can recover within 2μs with less than 120 mV ripple when the load current is changed from 0 to 100 mA.The total quiescent current of LDO and bandgap reference(without load) is 260 μA.
基金supported by the National Natural Science Foundation of China(Grant No.11272171)the Beijing Natural Science Foundation(Grant No.3132030)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a method for detection and quantification of the meshing characteristics of the harmonic drive gear based on computer vision. First, an experimental set-up that integrates a high speed camera system with a lighting system is developed, and the image processing is adopted to extract and polish the tooth profiles of the meshed teeth pairs in each acquired video sequence. Next, a physical-mathematical model is established to determine the relative positions of the selected tooth pair in the process of the gear engagement, and the combined standard uncertainty is utilized to evaluate the accuracy of the calculated kinematics parameters. Last, the kinematics analysis of the gear engagement under the ultra-low speed condition is performed with our method and previous method, and the influence of the input rotational speed on the results is examined. The results validate the effectiveness of our method, and indicate that the conventional method is not available in the future friction analysis. It is also shown that the engaging-in phase is approximately a uniform motion process, the engaging-out phase is a variable motion process, and these characteristics remain unchanged with the variation of the input rotational speed. Our method affords the ability to understand the frictional mechanism on the meshed contact surfaces of the harmonic drive gear, and also allows for the dynamic monitoring of the meshing properties.