An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, ...An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, etc., when high power supply voltage is needed. Accordingly,a new bandgap reference with a wide supply voltage range is proposed. Due to the improved structure,it features a high power supply rejection ratio (PSRR) and high temperature stability. In addition, an auxiliary micro-power reference is introduced to support the sleep mode of the PM chip and reduce its standby power consumption. The auxiliary reference provides bias currents in normal mode and a 1.28V reference voltage in sleep mode to replace the main reference and save power. Simulation results show that the reference provides a reference volt- age of 1.27V,which has a 3.5mV drift over the temperature range from -20 to 120~C and 56t^V deviation over a supply voltage range from 3 to 40V. The PSRR is higher than 100dB for frequency below 10kHz. The circuit was completed in 1.5tzm BCD (Bipolar-CMOS-DMOS) technology. The experimental results show that all main expectations are achieved.展开更多
An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated.The effects of test jig parasites can be completely removed in the measurement ...An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated.The effects of test jig parasites can be completely removed in the measurement by a new calibration method.In theory,the measuring range of the measurement system is only determined by the measuring range of the instruments network analyzer and photo detector.Diodes' bandwidth of 7 5GHz and 10GHz is measured.The results reveal that the method is feasible and comparing with other method,it is more precise and easier to use.展开更多
In this paper, a fully integrated CMOS receiver frontend for high-speed short range wireless applications centering at 60GHz millimeter wave (mmW) band is designed and implemented in 90nm CMOS technology. The 60GHz ...In this paper, a fully integrated CMOS receiver frontend for high-speed short range wireless applications centering at 60GHz millimeter wave (mmW) band is designed and implemented in 90nm CMOS technology. The 60GHz receiver is designed based on the super-heterodyne architecture consisting of a low noise amplifier (LNA) with inter-stage peaking technique, a single- balanced RF mixer, an IF amplifier, and a double-balanced I/Q down-conversion IF mixer. The proposed 60GHz receiver frontend derives from the sliding-IF structure and is designed with 7GHz ultra-wide bandwidth around 60GHz, supporting four 2.16GHz receiving channels from IEEE 802.1lad standard for next generation high speed Wi- Fi applications. Measured results show that the entire receiver achieves a peak gain of 12dB and an input 1-dB compression point of -14.SdBm, with a noise figure of lower than 7dB, while consumes a total DC current of only 60mA from a 1.2V voltage supply.展开更多
Ultra Wideband (UWB) technology is promising for wireless personal area network (WPAN) applications due to its high data rate, low power requirement and short-range characteristics. Instead of exploring new unused fre...Ultra Wideband (UWB) technology is promising for wireless personal area network (WPAN) applications due to its high data rate, low power requirement and short-range characteristics. Instead of exploring new unused frequency band, the UWB communication follows the overlay principle, i.e., sharing the spectrum with existing systems and devices. This novel radio technology has been recently approved by the regulatory authorities in the United States and Canada, and is being considered for approval in Europe and Asia. In this paper, an overview of the UWB radio technology from the technical, economical, and regulatory perspectives is provided. Firstly, the definition of UWB by the Federal Communications Commission (FCC) is introduced, followed by a brief introduction to the history. The current status of the standardization process resulting from the FCC’s recent decision to permit unlicensed operation in the [3.1 - 10.6] GHz band is discussed. Then, the reasons of considering UWB as a future solution for WLAN/WPAN applications are studied. In particular, the unique properties of UWB and its difference from other wireless technology alternatives are studied. Then, the benefits and challenges related to the commercial deployment of UWB for future applications are discussed. Finally, the research problems and challenges posed by the UWB technology are focused.展开更多
The quasi-phase-matched(QPM) condition of broadband second harmonic generation(SHG) in Ti-diffused MgO:LiNbO3 waveguide is theoretically simulated.The results show that the center wavelength of broadband SHG dependent...The quasi-phase-matched(QPM) condition of broadband second harmonic generation(SHG) in Ti-diffused MgO:LiNbO3 waveguide is theoretically simulated.The results show that the center wavelength of broadband SHG dependent on the waveguide width is around 1550 nm and the bandwidth is 50 nm.展开更多
文摘An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, etc., when high power supply voltage is needed. Accordingly,a new bandgap reference with a wide supply voltage range is proposed. Due to the improved structure,it features a high power supply rejection ratio (PSRR) and high temperature stability. In addition, an auxiliary micro-power reference is introduced to support the sleep mode of the PM chip and reduce its standby power consumption. The auxiliary reference provides bias currents in normal mode and a 1.28V reference voltage in sleep mode to replace the main reference and save power. Simulation results show that the reference provides a reference volt- age of 1.27V,which has a 3.5mV drift over the temperature range from -20 to 120~C and 56t^V deviation over a supply voltage range from 3 to 40V. The PSRR is higher than 100dB for frequency below 10kHz. The circuit was completed in 1.5tzm BCD (Bipolar-CMOS-DMOS) technology. The experimental results show that all main expectations are achieved.
文摘An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated.The effects of test jig parasites can be completely removed in the measurement by a new calibration method.In theory,the measuring range of the measurement system is only determined by the measuring range of the instruments network analyzer and photo detector.Diodes' bandwidth of 7 5GHz and 10GHz is measured.The results reveal that the method is feasible and comparing with other method,it is more precise and easier to use.
基金supported by National 973 Program of China 2010CB327404National 863 Program of China 2011AA010202+2 种基金National Science and Technology Major Project of China 2012ZX03004004National Natural Science Foundation of China under grants 61101001,and 61204026Tsinghua University Initiative Scientific Research Program
文摘In this paper, a fully integrated CMOS receiver frontend for high-speed short range wireless applications centering at 60GHz millimeter wave (mmW) band is designed and implemented in 90nm CMOS technology. The 60GHz receiver is designed based on the super-heterodyne architecture consisting of a low noise amplifier (LNA) with inter-stage peaking technique, a single- balanced RF mixer, an IF amplifier, and a double-balanced I/Q down-conversion IF mixer. The proposed 60GHz receiver frontend derives from the sliding-IF structure and is designed with 7GHz ultra-wide bandwidth around 60GHz, supporting four 2.16GHz receiving channels from IEEE 802.1lad standard for next generation high speed Wi- Fi applications. Measured results show that the entire receiver achieves a peak gain of 12dB and an input 1-dB compression point of -14.SdBm, with a noise figure of lower than 7dB, while consumes a total DC current of only 60mA from a 1.2V voltage supply.
文摘Ultra Wideband (UWB) technology is promising for wireless personal area network (WPAN) applications due to its high data rate, low power requirement and short-range characteristics. Instead of exploring new unused frequency band, the UWB communication follows the overlay principle, i.e., sharing the spectrum with existing systems and devices. This novel radio technology has been recently approved by the regulatory authorities in the United States and Canada, and is being considered for approval in Europe and Asia. In this paper, an overview of the UWB radio technology from the technical, economical, and regulatory perspectives is provided. Firstly, the definition of UWB by the Federal Communications Commission (FCC) is introduced, followed by a brief introduction to the history. The current status of the standardization process resulting from the FCC’s recent decision to permit unlicensed operation in the [3.1 - 10.6] GHz band is discussed. Then, the reasons of considering UWB as a future solution for WLAN/WPAN applications are studied. In particular, the unique properties of UWB and its difference from other wireless technology alternatives are studied. Then, the benefits and challenges related to the commercial deployment of UWB for future applications are discussed. Finally, the research problems and challenges posed by the UWB technology are focused.
基金supported by the National Natural Science Foundation of China (No.60978004)Shanghai Municipal Education Commission (Nos.10YZ14 and 10SG38)
文摘The quasi-phase-matched(QPM) condition of broadband second harmonic generation(SHG) in Ti-diffused MgO:LiNbO3 waveguide is theoretically simulated.The results show that the center wavelength of broadband SHG dependent on the waveguide width is around 1550 nm and the bandwidth is 50 nm.