以Ferrihydrite(又称水合氧化铁hydrous iron oxide)为反应前驱物,Fe(II)为催化剂,在微量Na2SiO3存在下,控制pH=6~9范围内合成出了亚微米级纺锤形和准立方形α-Fe2O3微粒.研究了初始pH,Na2SiO3浓度,Ferrihydrite老化方式对相转化时间...以Ferrihydrite(又称水合氧化铁hydrous iron oxide)为反应前驱物,Fe(II)为催化剂,在微量Na2SiO3存在下,控制pH=6~9范围内合成出了亚微米级纺锤形和准立方形α-Fe2O3微粒.研究了初始pH,Na2SiO3浓度,Ferrihydrite老化方式对相转化时间和产物形貌的影响,利用XRD,SEM等手段对产物进行了表征.结果表明,Na2SiO3对Ferriihydrite催化相转化有一定的抑制作用,是影响其相转化过程及产物形貌的关键.在弱碱性条件下,[Si]/[Fe3+]为0.01时可直接获得纺锤形(轴比≥2)或准立方形(300~400nm)α-Fe2O3粒子,并对形成机理进行了初步讨论.展开更多
Auto CAD2.6版应用相当广泛,它是个必使用数字协处理器也能运行的最高版本.其绘图功能大.绘图质量高,不失为一个适应性强、经济实用的版本.由于它对硬件质量要求不高,使其成为在教学上用得较多的一种软件.然而,该版本提供的针式打印机...Auto CAD2.6版应用相当广泛,它是个必使用数字协处理器也能运行的最高版本.其绘图功能大.绘图质量高,不失为一个适应性强、经济实用的版本.由于它对硬件质量要求不高,使其成为在教学上用得较多的一种软件.然而,该版本提供的针式打印机均为九件打印机驱动程序,没有提供24针打印机驱动程序.展开更多
The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,...The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.展开更多
Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue o...Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue operations.A number of methods have been developed to determine the capacity for explosion of gas mixtures in sealed areas.One of the more popular methods is the Coward explosive triangle,published by Coward.He presented a fast and easy way to determine the capacity for explosion of gas mixtures,which has proved to be a very useful tool for mining engineers and members of rescue teams.However,due to few drawbacks in this method;potential errors would be introduced when it is applied.In a brief introduction we first describe the Coward method and then,we propose and discuss new calibrated explosive triangles.We demonstrate the method in two case studies where we compare our results with those of the old model.The results indicate that the calibrated method have improved accuracy and reliability.Therefore,assessments can be made more accurately.展开更多
A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid...A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid phase and solid phase. To study the seepage behavior of the fluid phase, all the fractures in solid are identified by a block cutting algorithm and form a flow network. Then the hydraulic heads at crack ends are solved. To study the deformation and destruction of solid phase, the 2-order NMM and sub-region boundary element method are combined to solve the stress-strain field. Crack growth is controlled by the well-accepted criterion, including the tension criterion or Mohr-Coulomb criterion for the initialization of cracks and the maximum circumferential stress theory for crack propagation. Once the crack growth occurs, the seepage and deformation analysis will be resolved in the next simulation step. Such weak coupling analysis will continue until the structure becomes stable or is destructed. Five examples are used to verify the new method. The results demonstrate that the method can solve the SIFs at crack tip and fluid flow in crack network precisely, and the method is effective in simulating the hydraulic facture problem. Besides, the NMM shows great convenience and is of high accuracy in simulating the crack growth problem.展开更多
Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the ...Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the first forming step, the springback law can be obtained. With the springback law and the target angle, the exact punch displacement which determines the formed angle in each bending step is predicted. In the succedent forming steps, the bending process is carried out with the exact punch displacement by real-time revising the springback law. And the angle error in each forming step is calculated by comparing the actual formed angle with the target angle. By conducting compensation for the last angle error in the next forming step, each precise bending process step is realized. A system of intelligent control technology for forming the steel pipe was developed. A calibration method is proposed to calculate the exterior parameters of the CCD camera, in which the equilateral triangle is em-ployed as the calibrating board and only one image needs to be captured. A mathematical model, which converts the angle in the image into the actual formed angle, is derived. The experimental results showed that the ellipticity of the formed pipes was less than 1.5% and the high-quality pipes can be manufactured without the worker's operating experience by employing the in-telligent control technology.展开更多
Einstein's equation,in its standard form,breaks down at the Big Bang singularity.A new version,equivalent to Einstein's whenever the latter is defined,but applicable in wider situations,is proposed.The new equation ...Einstein's equation,in its standard form,breaks down at the Big Bang singularity.A new version,equivalent to Einstein's whenever the latter is defined,but applicable in wider situations,is proposed.The new equation remains smooth at the Big Bang singularity of the Friedmann-Lemaatre-Robertson-Walker model.It is a tensor equation defined in terms of the Ricci part of the Riemann curvature.It is obtained by taking the Kulkarni-Nomizu product between Einstein's equation and the metric tensor.展开更多
The author proves a global existence result for strong solutions to the quasilinear dissipative hyperbolic equation (1.1) below, corresponding to initial values and source terms of arbitrary size, provided that the hy...The author proves a global existence result for strong solutions to the quasilinear dissipative hyperbolic equation (1.1) below, corresponding to initial values and source terms of arbitrary size, provided that the hyperbolicity parameter ε is sufficiently small. This implies a corresponding global existence result for the reduced quasilinear parabolic equation (1.4) below.展开更多
This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard componen...This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.展开更多
文摘以Ferrihydrite(又称水合氧化铁hydrous iron oxide)为反应前驱物,Fe(II)为催化剂,在微量Na2SiO3存在下,控制pH=6~9范围内合成出了亚微米级纺锤形和准立方形α-Fe2O3微粒.研究了初始pH,Na2SiO3浓度,Ferrihydrite老化方式对相转化时间和产物形貌的影响,利用XRD,SEM等手段对产物进行了表征.结果表明,Na2SiO3对Ferriihydrite催化相转化有一定的抑制作用,是影响其相转化过程及产物形貌的关键.在弱碱性条件下,[Si]/[Fe3+]为0.01时可直接获得纺锤形(轴比≥2)或准立方形(300~400nm)α-Fe2O3粒子,并对形成机理进行了初步讨论.
基金Project(61201381)supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘The sensor array calibration methods tailored to uniform rectangular array(URA)in the presence of mutual coupling and sensor gain-and-phase errors were addressed.First,the mutual coupling model of the URA was studied,and then a set of steering vectors corresponding to distinct locations were numerically computed with the help of several time-disjoint auxiliary sources with known directions.Then,the optimization modeling with respect to the array error matrix(defined by the product of mutual coupling matrix and sensor gain-and-phase errors matrix)was constructed.Two preferable algorithms(called algorithm I and algorithm II)were developed to minimize the cost function.In algorithm I,the array error matrix was regarded as a whole parameter to be estimated,and the exact solution was available.Compared to some existing algorithms with the similar computation framework,algorithm I can make full use of the potentially linear characteristics of URA's error matrix,thus,the calibration precision was obviously enhanced.In algorithm II,the array error matrix was decomposed into two matrix parameters to be optimized.Compared to algorithm I,it can further decrease the number of unknowns and,thereby,yield better estimation accuracy.However,algorithm II was incapable of producing the closed-form solution and the iteration operation was unavoidable.Simulation results validate the excellent performances of the two novel algorithms compared to some existing calibration algorithms.
文摘Determination of the capacity for explosion of gas mixtures in a sealed area is very important for mining engineers.If this capacity is high,it would be very dangerous for rescue workers to proceed with their rescue operations.A number of methods have been developed to determine the capacity for explosion of gas mixtures in sealed areas.One of the more popular methods is the Coward explosive triangle,published by Coward.He presented a fast and easy way to determine the capacity for explosion of gas mixtures,which has proved to be a very useful tool for mining engineers and members of rescue teams.However,due to few drawbacks in this method;potential errors would be introduced when it is applied.In a brief introduction we first describe the Coward method and then,we propose and discuss new calibrated explosive triangles.We demonstrate the method in two case studies where we compare our results with those of the old model.The results indicate that the calibrated method have improved accuracy and reliability.Therefore,assessments can be made more accurately.
基金supported by the National Natural Science Foundation of China(Grant Nos.51439005&51209235)the National Basic Research Program of China("973"Project)(Grant Nos.2013CB035904,2013CB-036406)
文摘A 2nd order numerical manifold method(NMM) based method is developed to simulate the hydraulic fractures propagating process in rock or concrete. The proposed method uses a weak coupling technique to analyze the fluid phase and solid phase. To study the seepage behavior of the fluid phase, all the fractures in solid are identified by a block cutting algorithm and form a flow network. Then the hydraulic heads at crack ends are solved. To study the deformation and destruction of solid phase, the 2-order NMM and sub-region boundary element method are combined to solve the stress-strain field. Crack growth is controlled by the well-accepted criterion, including the tension criterion or Mohr-Coulomb criterion for the initialization of cracks and the maximum circumferential stress theory for crack propagation. Once the crack growth occurs, the seepage and deformation analysis will be resolved in the next simulation step. Such weak coupling analysis will continue until the structure becomes stable or is destructed. Five examples are used to verify the new method. The results demonstrate that the method can solve the SIFs at crack tip and fluid flow in crack network precisely, and the method is effective in simulating the hydraulic facture problem. Besides, the NMM shows great convenience and is of high accuracy in simulating the crack growth problem.
基金Supported by the National Natural Science Foundation of China (Grant No. 50805126)the Hebei Natural Science Foundation (Grant No. E2009000389)
文摘Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the first forming step, the springback law can be obtained. With the springback law and the target angle, the exact punch displacement which determines the formed angle in each bending step is predicted. In the succedent forming steps, the bending process is carried out with the exact punch displacement by real-time revising the springback law. And the angle error in each forming step is calculated by comparing the actual formed angle with the target angle. By conducting compensation for the last angle error in the next forming step, each precise bending process step is realized. A system of intelligent control technology for forming the steel pipe was developed. A calibration method is proposed to calculate the exterior parameters of the CCD camera, in which the equilateral triangle is em-ployed as the calibrating board and only one image needs to be captured. A mathematical model, which converts the angle in the image into the actual formed angle, is derived. The experimental results showed that the ellipticity of the formed pipes was less than 1.5% and the high-quality pipes can be manufactured without the worker's operating experience by employing the in-telligent control technology.
文摘Einstein's equation,in its standard form,breaks down at the Big Bang singularity.A new version,equivalent to Einstein's whenever the latter is defined,but applicable in wider situations,is proposed.The new equation remains smooth at the Big Bang singularity of the Friedmann-Lemaatre-Robertson-Walker model.It is a tensor equation defined in terms of the Ricci part of the Riemann curvature.It is obtained by taking the Kulkarni-Nomizu product between Einstein's equation and the metric tensor.
基金supported by the Fulbright Foundation (Chile, 2006)
文摘The author proves a global existence result for strong solutions to the quasilinear dissipative hyperbolic equation (1.1) below, corresponding to initial values and source terms of arbitrary size, provided that the hyperbolicity parameter ε is sufficiently small. This implies a corresponding global existence result for the reduced quasilinear parabolic equation (1.4) below.
基金supported by funds from National natural science foundation of China(Grant No.51176004)
文摘This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.