This paper proposes a method for improving the precision of Network Traffic Prediction based on the Maximum Correntropy Criterion(NTPMCC),where the nonlinear characteristics of network traffic are considered.This meth...This paper proposes a method for improving the precision of Network Traffic Prediction based on the Maximum Correntropy Criterion(NTPMCC),where the nonlinear characteristics of network traffic are considered.This method utilizes the MCC as a new error evaluation criterion or named the cost function(CF)to train neural networks(NN).MCC is based on a new similarity function(Generalized correlation entropy function,Correntropy),which has as its foundation the Parzen window evaluation and Renyi entropy of error probability density function.At the same time,by combining the MCC with the Mean Square Error(MSE),a mixed evaluation criterion with MCC and MSE is proposed as a cost function of NN training.According to the traffic network characteristics including the nonlinear,non-Gaussian,and mutation,the Elman neural network is trained by MCC and MCC-MSE,and then the trained neural network is used as the model for predicting network traffic.The simulation results based on the evaluation by Mean Absolute Error(MAE),MSE,and Sum Squared Error(SSE)show that the accuracy of the prediction based on MCC is superior to the results of the Elman neural network with MSE.The overall performance is improved by about 0.0131.展开更多
The electric activities of neurons could be changed when ion channel block occurs in the neurons.External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley(HH) neuron,and target wave...The electric activities of neurons could be changed when ion channel block occurs in the neurons.External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley(HH) neuron,and target waves are induced to occupy the network.The forcing current I1 is imposed on neurons in a local region with m 0 ×m 0 nodes in the network,neurons in other nodes are imposed with another forcing current I2.Target wave could be developed to occupy the network when the gradient forcing current(I1-I2) exceeds certain threshold,and the formation of target wave is independent of the selection of boundary condition.It is also found that the developed target wave can decrease the negative effect of ion channel block and suppress the spiral wave,and thus channel noise is also considered.The potential mechanism of formation of target wave could be that the gradient forcing current(I1-I2) generates quasi-periodical signal in local area,and the propagation of quasi-periodical signal induces target-like wave due to mutual coupling among neurons in the network.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61071126the National Radio Project under Grants No. 2010ZX03004001, No.2010ZX03004-002, No.2011ZX03002001
文摘This paper proposes a method for improving the precision of Network Traffic Prediction based on the Maximum Correntropy Criterion(NTPMCC),where the nonlinear characteristics of network traffic are considered.This method utilizes the MCC as a new error evaluation criterion or named the cost function(CF)to train neural networks(NN).MCC is based on a new similarity function(Generalized correlation entropy function,Correntropy),which has as its foundation the Parzen window evaluation and Renyi entropy of error probability density function.At the same time,by combining the MCC with the Mean Square Error(MSE),a mixed evaluation criterion with MCC and MSE is proposed as a cost function of NN training.According to the traffic network characteristics including the nonlinear,non-Gaussian,and mutation,the Elman neural network is trained by MCC and MCC-MSE,and then the trained neural network is used as the model for predicting network traffic.The simulation results based on the evaluation by Mean Absolute Error(MAE),MSE,and Sum Squared Error(SSE)show that the accuracy of the prediction based on MCC is superior to the results of the Elman neural network with MSE.The overall performance is improved by about 0.0131.
基金supported by the National Nature Science Foundation of China (Grant Nos. 11265008 and 11272242)
文摘The electric activities of neurons could be changed when ion channel block occurs in the neurons.External forcing currents with diversity are imposed on the regular network of Hodgkin-Huxley(HH) neuron,and target waves are induced to occupy the network.The forcing current I1 is imposed on neurons in a local region with m 0 ×m 0 nodes in the network,neurons in other nodes are imposed with another forcing current I2.Target wave could be developed to occupy the network when the gradient forcing current(I1-I2) exceeds certain threshold,and the formation of target wave is independent of the selection of boundary condition.It is also found that the developed target wave can decrease the negative effect of ion channel block and suppress the spiral wave,and thus channel noise is also considered.The potential mechanism of formation of target wave could be that the gradient forcing current(I1-I2) generates quasi-periodical signal in local area,and the propagation of quasi-periodical signal induces target-like wave due to mutual coupling among neurons in the network.