A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole ...A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole lead collimator.The compact camera has better spatial resolution than Anger camera.The average value of intrinsic spatial resolutions is 2.3 mm (FWHM).The overall spatial resolution (FWHM) is 3,5 and 6 mm at 0,2.5 and 3 mm SCD (source-to-collimator distance),respectively.The phantom studies with the compact camera have demonstrated that parallel-hole collimator gamma camera is a practical technique for nuclear medicine application.展开更多
The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and ...The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.展开更多
The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a positi...The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.展开更多
基金Supported by National Natural Science Foundation of China (No.10275063)
文摘A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole lead collimator.The compact camera has better spatial resolution than Anger camera.The average value of intrinsic spatial resolutions is 2.3 mm (FWHM).The overall spatial resolution (FWHM) is 3,5 and 6 mm at 0,2.5 and 3 mm SCD (source-to-collimator distance),respectively.The phantom studies with the compact camera have demonstrated that parallel-hole collimator gamma camera is a practical technique for nuclear medicine application.
文摘The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.
基金supported by the National Natural Science Foundation of China(Grant Nos.40704026 and 41374167)
文摘The pitch-angle distribution of energetic particles is important for space physics studies on magnetic storm and particle acceleration.A‘pin-hole’imaging structure is built with the‘pin-hole’technique and a position sensitive detector,which can be used to measure the pitch angle distribution of energetic particles.To calibrate the angular response of the‘pin-hole’imaging structure,special experiment facilities are needed,such as the particle accelerator with special design.The features of this kind of particle accelerator are:1)The energy range of the outgoing particles should be mid-energy particles(tens keV to several hundred keV);2)the particle flux should be consistent in time-scale;3)the directions of the outgoing particles should be the same and 4)the particle number within the spot should be low enough.In this paper,a method to calibrate the angular response of the‘pin-hole’imaging structure by the90Sr/90Y β source with a collimator is introduced and simulated by Geant4 software.The result of the calibration with the collimated β source is in accord with the Geant4 simulations,which verifies the validity of this method.