期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于LSM和RELBP的煤岩识别方法探讨
1
作者 张荣华 《计算技术与自动化》 2021年第1期109-113,共5页
对当前煤岩识别方法的研究现状进行了介绍,并提出将最小二乘法模型(Least square model,LSM)和融入平滑滤波思想的鲁棒扩展局部二值模式(Robust extended local binary Pattern,RELBP)融入煤岩识别领域。对基于LSM和RELBP的煤岩识别方... 对当前煤岩识别方法的研究现状进行了介绍,并提出将最小二乘法模型(Least square model,LSM)和融入平滑滤波思想的鲁棒扩展局部二值模式(Robust extended local binary Pattern,RELBP)融入煤岩识别领域。对基于LSM和RELBP的煤岩识别方法的煤岩自动化识别技术(RELBP-LSM)进行了探讨。结果表明:(1)当前的煤岩识别方法大多存在效果较差、稳定性欠佳、适用范围小等缺点,同时易受人为因素的影响;(2)以最小二乘法和局部二值模式为理论基础,建立起RELBP-LSM煤岩识别方法,并通过参数敏感性分析,确定正则化参数λ的最佳取值为10-3.5,优选模式数d的最佳取值为500;(3)对不同方法的准确识别率进行对比分析,认为RELBP-LSM法不仅具有较高的准确识别率,同时能大大降低内存占用率,加快识别速率和效率。 展开更多
关键词 煤岩 最小二乘法 局部二值法 RELBP-LSM 参数敏感性 准确识别率
下载PDF
融合能量熵编码和分类模型的牵引电机故障诊断 被引量:3
2
作者 张坤鹏 李昊 +2 位作者 安春兰 杨辉 张志超 《铁道学报》 EI CAS CSCD 北大核心 2023年第9期64-73,共10页
针对牵引电机故障特征不明显、识别定位困难等问题,提出一种融合能量熵编码与分类模型的故障特征量化诊断方法。结合故障机理特性,对故障严重程度进行建模,用微弱电流信号重构对故障敏感的电磁转矩信号,建立基于经验模态分解能量熵和故... 针对牵引电机故障特征不明显、识别定位困难等问题,提出一种融合能量熵编码与分类模型的故障特征量化诊断方法。结合故障机理特性,对故障严重程度进行建模,用微弱电流信号重构对故障敏感的电磁转矩信号,建立基于经验模态分解能量熵和故障属性知识编码的故障特征矩阵;为消除牵引电机故障样本少、非线性模式识别对精确诊断的影响,提出一种改进的灰狼优化算法(IGWO)对支持向量机分类SVM模型参数进行辨识,通过对多类故障准确识别率寻优实现对牵引电机状态预测。在高速列车牵引系统半实物仿真平台进行优化模型对比试验,通过对故障诊断指标分析可知,能量熵编码与IGWO-SVM融合方案可以很好地识别牵引电机故障。 展开更多
关键词 高速列车牵引电机 电磁转矩能量熵编码 改进的灰狼优化算法 分类优化模型 多类故障准确识别率
下载PDF
Human action recognition based on chaotic invariants 被引量:1
3
作者 夏利民 黄金霞 谭论正 《Journal of Central South University》 SCIE EI CAS 2013年第11期3171-3179,共9页
A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for represent... A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness. 展开更多
关键词 chaotic system action recognition chaotic invariants dynamic time wrapping (DTW) relevance vector machines(RVM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部