Compressive properties of AZ31 alloy were investigated at temperatures from room temperature to 543 K and at strain rates from 10-3to 2×10 4s-1.The results show that the compressive behavior and deformation mecha...Compressive properties of AZ31 alloy were investigated at temperatures from room temperature to 543 K and at strain rates from 10-3to 2×10 4s-1.The results show that the compressive behavior and deformation mechanism of AZ31 depend largely on the temperature and strain rate.The flow stress increases with the increase of strain rate at fixed temperature,while decreases with the increase of deformation temperature at fixed strain rate.At low temperature and quasi-static condition,the true stress-true strain curve of AZ31 alloy can be divided into three stages(strain hardening,softening and stabilization) after yielding.However,at high temperature and high strain rate,the AZ31 alloy shows ideal elastic-plastic properties.It is therefore suggested that the change in loading conditions(temperature and strain rate) plays an important role in deformation mechanisms of AZ31 alloy.展开更多
A review of our recent work on ultrahigh resolution optical fiber sensors in the quasi-static region is presented, and their applications in crustal deformation measurement are introduced. Geophysical research such as...A review of our recent work on ultrahigh resolution optical fiber sensors in the quasi-static region is presented, and their applications in crustal deformation measurement are introduced. Geophysical research such as studies on earthquake and volcano requires monitoring the earth's crustal deformation continuously with a strain resolution on the order of nano-strains (ne) in static to low frequency region. Optical fiber sensors are very attractive due to their unique advantages such as low cost, small size, and easy deployment. However, the resolution of conventional optical fiber strain sensors is far from satisfactory in the quasi-static domain. In this paper, several types of recently developed fiber-optic sensors with ultrahigh resolution in the quasi-static domain are introduced, including a fiber Bragg grating (FBG) sensor interrogated with a narrow linewidth tunable laser, an FBG based fiber Fabry-Perot interferometer (FFPI) sensor by using a phase modulation technique, and an FFPI sensor with a sideband interrogation technique. Quantificational analyses and field experimental results demonstrated that the FBG sensor can provide nano-order strain resolution. The sub-nano strain resolution was also achieved by the FFPI sensors in laboratory. Above achievements provide the basis to develop powerful fiber-optic tools for geophysical research on crustal deformation monitoring.展开更多
基金Project(10932008)supported by the National Natural Science Foundation of ChinaProject(2008ZF53050)supported by Aviation Science Foundation of China Aviation Industry Corporation I
文摘Compressive properties of AZ31 alloy were investigated at temperatures from room temperature to 543 K and at strain rates from 10-3to 2×10 4s-1.The results show that the compressive behavior and deformation mechanism of AZ31 depend largely on the temperature and strain rate.The flow stress increases with the increase of strain rate at fixed temperature,while decreases with the increase of deformation temperature at fixed strain rate.At low temperature and quasi-static condition,the true stress-true strain curve of AZ31 alloy can be divided into three stages(strain hardening,softening and stabilization) after yielding.However,at high temperature and high strain rate,the AZ31 alloy shows ideal elastic-plastic properties.It is therefore suggested that the change in loading conditions(temperature and strain rate) plays an important role in deformation mechanisms of AZ31 alloy.
文摘A review of our recent work on ultrahigh resolution optical fiber sensors in the quasi-static region is presented, and their applications in crustal deformation measurement are introduced. Geophysical research such as studies on earthquake and volcano requires monitoring the earth's crustal deformation continuously with a strain resolution on the order of nano-strains (ne) in static to low frequency region. Optical fiber sensors are very attractive due to their unique advantages such as low cost, small size, and easy deployment. However, the resolution of conventional optical fiber strain sensors is far from satisfactory in the quasi-static domain. In this paper, several types of recently developed fiber-optic sensors with ultrahigh resolution in the quasi-static domain are introduced, including a fiber Bragg grating (FBG) sensor interrogated with a narrow linewidth tunable laser, an FBG based fiber Fabry-Perot interferometer (FFPI) sensor by using a phase modulation technique, and an FFPI sensor with a sideband interrogation technique. Quantificational analyses and field experimental results demonstrated that the FBG sensor can provide nano-order strain resolution. The sub-nano strain resolution was also achieved by the FFPI sensors in laboratory. Above achievements provide the basis to develop powerful fiber-optic tools for geophysical research on crustal deformation monitoring.